CSCI 742 - Compiler Construction

Lecture 10
Top-Down vs. Bottom-up Parsing
Instructor: Hossein Hojjat

February 7, 2018

Recap: Compiler Phas

Source Code
(concrete syntax)

‘if (x|=|=[oD)| |xI=x[H1|;

Lexical Analysis
A5

Token Stream E@H

Syntax Analysis
(R (Parsing)
Abstract Syntex Tree == S o
(AST) ® © ® @
® @ Semantic Analysis
(Name Analysis,
Type Analysis, ...)

Attributed AST

Code Generation

Machine Code

Approaches to Parsing

Top Down (Goal driven)

e Start from the start non-terminal
e Grow parse tree downwards to match the input word

e Easier to understand and program manually @ @

Bottom Up (Data Driven) @ num

e Start from the input word
e Build up parse tree which has start non-terminal as root

e More powerful and used by most parser generators

Directionality

Directional Methods

e Process the input symbol by symbol from Left to right

e Advantage: parsing starts and makes progress before the last symbol
of the input is seen

e Example: LL and LR parsers

Non-directional Methods

e Allow access to input in an arbitrary order

e Require the entire input to be in memory before parsing can start
e Advantage: allow more flexible grammars than directional parsers
e Example: CYK parser

Directionality

Directional Methods

e Process the input symbol by symbol from Left to right

e Advantage: parsing starts and makes progress before the last symbol
of the input is seen

e Example: LL and LR parsers

Non-directional Methods

e Allow access to input in an arbitrary order
e Require the entire input to be in memory before parsing can start
e Advantage: allow more flexible grammars than directional parsers

e Example: CYK parser

We first focus on directional parsers (will discuss CYK after LL and LR)

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T

T — num

Top-down Parsing

B ®)

Finds leftmost derivation

Remaining Input: num -+ num

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T

T — num

Top-down Parsing

E
E+T

Finds leftmost derivation

|

Remaining Input: num -+ num

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num

Top-down Parsing

E
E+T
T+T

Finds leftmost derivation

E—-FE+T
grammar: FE — T

T — num

|

Remaining Input: num -+ num

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T
T — num
Top-down Parsing
E (E)
E+T
T+T ® | @
num+ 7'
Finds leftmost derivation
num -+
Remaining Input: num + num

Match Input Token!

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T
T — num
Top-down Parsing
E (E)
E+T
T+T ® | @
num+ 7'
Finds leftmost derivation
num -+
Remaining Input: + num

Match Input Token!

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T
T — num
Top-down Parsing
E (E)
E+T
T+T ® | @
num+ 7'
num + num @
Finds leftmost derivation
num -4 num
Remaining Input: num

Match Input Token!

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T

T — num

Top-down Parsing

B (E)

E+T

T+T E) (T)

num + 7T

num + num @

Finds leftmost derivation

num -4 num

Remaining Input:

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num

Remaining Input:

E—-FE+T
grammar: FE — T

T — num

Bottom-up Parsing

num + num

Finds reverse rightmost
derivation

num -+ num

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num

E—-FE+T
grammar: FE — T

T — num

Bottom-up Parsing

num + num

Finds reverse rightmost
num derivation

Remaining Input: + num

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T

T — num

Bottom-up Parsing

T + num
num + num
Finds reverse rightmost
num derivation

Remaining Input: + num

Parsing: Top-down vs. Bottom-up (Directional)

E—-FE+T

input: num + num grammar: E — T

T — num

Bottom-up Parsing

E + num
T + num

num + num

Finds reverse rightmost

num derivation

Remaining Input: + num

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T

T — num

Bottom-up Parsing

E+T
E + num
T + num

num + num

Finds reverse rightmost
num + num derivation

Remaining Input:

Parsing: Top-down vs. Bottom-up (Directional)

E—-E+T
input: num + num grammar: E — T

T — num

Bottom-up Parsing
(E) E
E4+T

@ @ FE + num

T + num

@ num + num

Finds reverse rightmost
num + num derivation

Remaining Input:

Parsing: Top-down vs. Bottom-up (Directional)

input: num + num

Top-down Parsing

E
E+T
Tr+7T
num+ 7

num -+ num

Finds leftmost derivation

E—-FE+T
grammar: FE — T

T — num

Bottom-up Parsing
(E) E
E4+T

@ @ FE + num

T + num

@ num + num

Finds reverse rightmost
num + num derivation

Parsing: Top-down vs. Bottom-up (Directional)

Bottom-up: Don't need to figure out as much of the parse tree for
a given amount of input (more powerful)

Top-down: Easier to understand and program manually

scanned unscanned scanned unscanned

Top-down Bottom-up

Parsing Complexity

e For certain classes of constrained CFGs, we can always parse in
linear time
- LL parsers (Use a top-down strategy)
- LR parsers (Use a bottom-up strategy)
e The first L means the parser reads input from Left to right
without backing up

e LL: Left-to-right scan, Leftmost derivation

e LR: Left-to-right scan, Rightmost derivation in reverse

e Any ambiguous CFG can neither be LL nor LR

e Deterministic: they produce a single correct parse without guessing
or backtracking

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num

num

current
token

1) E — num
2) E—>nun+ FE

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

num

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

num

Matches input token, choice is accepted for now

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

num

Matches input token, choice is accepted for now

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

num

Can't match input token, need to backtrack

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

num

Can't match input token, need to backtrack

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num

1) E — num
current 2) E—>nun+ FE

token
Backtracking:
Make a choice of a production rule, if it fails backtrack and evaluate the
next choice

num +

Lookahead Input Symbols

e Build a top-down parse tree for the following input:

num + num
7 1) E — num

curreh‘t" 2) E—>nun+ FE

token
Predictive Parsing:
e Allow parser to “lookahead” k& number of tokens from the input
e Decide which production to apply based on next tokens

Efficient: no need to backtrack

LL(1): Parser can only look at current token

LL(2): Parser can only look at current token and the token follows it

LL(k): Parser can look at k tokens from input

LL(k) Parsing

e Determine a leftmost derivation of the input while:
e Read the input from Left to right
e Look ahead at most k input tokens
e Starting from the start symbol, grow a parse tree top-down in
left-to-right pre-order while:
e Read the input from Left to right
e Look ahead at most k input tokens beyond the input prefix matched
by the parse tree derived so far

LL(k) Parsing

S . Tret(:e_
A/ \
N

k Ioa(ra_ﬁead

e Parse tree from S to the examined input is complete

e Look-ahead tokens must fully specify the parse tree from S to the
input symbol

e In the example we have to know that S — AB before we even see

any of B

LL(k) Parsing

S Tree

A/ \ Frontier
N

k Ioa(ra_ﬁead

e Assume there are two production rules for D:
D — oy |052 (OéiE(NUT)*)

e If DB =* wy and DB =" wy (w; is a word)

e If an # an then wy and wy must differ in first k& symbols

Bottom-up Parsing

S

W\ 7

C
‘ Tree Frontier

[T]
kloa(ra_ﬁead

e Bottom-up parser builds the tree only above the examined input

e Although we are at the same point in the input string,
the production S — AB has not been specified yet

e This delayed decision allows us to parse more grammars than
predictive top-down parsing (LL)

Exercise

Question

Is the following grammar LL(k)? If yes, for which value of k?

S — AB
A—adb|e
B —bB | e

10

Exercise

Question
Is the following grammar LL(k)? If yes, for which value of k?

S — AB
A—adb|e
B —bB | e

Answer

Grammar is LL(1).

Any derivation starts with S = AB.

The next derivation step uses one of the productions A — aAbor A — ¢
based on the next current token.

The same argument holds for B-productions.

10

Exercise

Question

Is the following grammar LL(k)? If yes, for which value of k7

S—A|B
A — aadA | aa

B — aaB | a

11

Exercise

Question

Is the following grammar LL(k)? If yes, for which value of k7

S—A|B
A—alc
B—b|c

12

Exercise

Question

Is the following grammar LL(k)? If yes, for which value of k7

S —aaA | AB
A—ale|ab
B—b

13

Exercise

Question

Is the following grammar LL(k)? If yes, for which value of k7

S — Ab | Ac
A—aA|e

14

Exercise

Question

Is the following grammar LL(k)? If yes, for which value of k7

S — Ab | Ac
A—aA|e

Answer

e Grammar is not LL(k) parser for any finite k

e Expanding S to one of the alternatives is the first step a top down
parser has to do

e There can always be a word that needs more than & lookahead

e For a word beginning with k a's parser needs to look at at least
(k 4+ 1) lookahead tokens to make the decision

14

Left-recursive Grammars

e Left recursive grammars cannot be parsed by a LL(k)-parser

e Predictive parser uses the lookahead tokens to choose the correct
production rule

e For each k lookahead tokens there must be a unique production

e On a left-recursive grammar the algorithm may try to expand a
production without consuming any input

e Parse tree continuously get expanded without any advance in input

e Parsing process may never terminate!

15

