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For Installation Problems

Harry Dilnot (harry.dilnot@kcl.ac.uk)
Windows expert

Oliver Iliffe (oliver.iliffe@kcl.ac.uk)
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From Pollev last week

Is the equivalence of two regexes belong in the P
or NP class of problems?
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From Pollev last week

If state machines are not efficient, then how/why
do many lexer packages like the logos crate in
rust compile down a lexer definition down to
a jump table driven state machine? Could we
achieve quicker lexing with things like SIMD in-
structions?
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