
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Office Hour: Friday 12 – 14
Location: N7.07 (NorthWing, Bush House)
Slides & Progs: KEATS
Pollev: https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 03, King’s College London – p. 1/6



For Installation Problems

Harry Dilnot (harry.dilnot@kcl.ac.uk)
Windows expert

Oliver Iliffe (oliver.iliffe@kcl.ac.uk)

CFL 03, King’s College London – p. 2/6



From Pollev last week

Is the equivalence of two regexes belong in the P
or NP class of problems?

CFL 03, King’s College London – p. 3/6



From Pollev last week

If state machines are not efficient, then how/why
do many lexer packages like the logos crate in
rust compile down a lexer definition down to
a jump table driven state machine? Could we
achieve quicker lexing with things like SIMD in-
structions?

CFL 03, King’s College London – p. 4/6



CFL 03, King’s College London – p. 5/6

0 10,000 20,000 30,000 40,000
0
10
20
30
40
50
60

n copies of "abcdef"

tim
e
in
se
cs

Rust

Regular expression: (abcdef){n}

n



CFL 03, King’s College London – p. 5/6

0 10,000 20,000 30,000 40,000
0
10
20
30
40
50
60

n copies of "abcdef"

tim
e
in
se
cs

Rust
Scala V3

Regular expression: (abcdef){n}

n



CFL 03, King’s College London – p. 6/6

5 10 15 20 25 30
0

10

20

30

strings of the form a...a︸︷︷︸
n

tim
e
in
se
cs Python

JavaScript
Swift
Dart

Regular expression: (a*)* b

n


