
CSCI 742 - Compiler Construction

Lecture 37
Loop Optimizations

Instructor: Hossein Hojjat

April 25, 2018

Program Loops

• Loop: a computation repeatedly executed until a terminating
condition is reached

• High-level loop constructs:
- While loop: while(E) S

- Do-while loop: do S while(E)

- For loop: for(i=1; i<=u; i+=c) S

• 90/10 rule:
90% of any computation is normally spent in 10% of the code (loops)

• Control-flow graph can help give us useful information

• How to analyze the control-flow graph to detect loops?

• Some techniques to optimize loops

1

Some Loop Optimizations

• Loop-invariant code motion
• Pre-compute before entering the loop

• Strength Reduction
• Replace expensive operations (multiplications) with cheaper ones

(additions)

• Elimination of induction variables
• Induction variable: variable whose value on each loop iteration is a

linear function of the iteration index
• In most cases induction variables can be removed

(if not used after loop)

• Elimination of null and array-bounds checks
• Use data-flow analysis to prove integer range

• Loop unrolling to reduce number of control transfers

2

Detecting Loops

• Need to identify loops in the program

• Easy to detect loops in high-level constructs

• Harder to detect loops in low-level code or in general control-flow
graphs

Examples where loop detection is difficult:

• Languages with unstructured goto constructs:
structure of high-level loop constructs may be destroyed

• Java bytecode level (without high-level source program):
only low-level code is available

3

Basic Blocks

• In some applications (e.g. loop detection) control-flow graph of
basic block is more convenient

• Basic block is a sequence of instructions
- no branches out from the middle of basic block
- no branches into the middle of basic block

• Basic block should be maximal

• Execution of basic block
- starts with first instruction
- includes all instructions in basic block

4

Basic Block Construction

• Start with control-flow graph of instructions

• Visit all edges in graph

• Merge adjacent edges

S1

S2

S1

S2

5

Basic Blocks Example

x = 0;

z = x * z;

L1: c = z / w;

if (c < y) goto L2;

e = z / c;

f = e + 1;

L2: g = f;

h = t - g;

if (e > 0) goto L3;

goto L1;

L3: return

x = 0
z = x ∗ z

c = z/w
[(c < y)]

e = z/c
f = e+ 1

g = f
h = t− g
[(e > 0)]

return

6

Control-Flow Analysis

• Goal: identify loops in the control flow graph

A loop in the CFG:

• Is a set of basic blocks

• Has a loop header: node in a loop that has no
immediate predecessors in the loop

• Has a back edge from one of its nodes to the
header

7

Control-Flow Analysis

• Goal: identify loops in the control flow graph

A loop in the CFG:

• Is a set of basic blocks

• Has a loop header: node in a loop that has no
immediate predecessors in the loop

• Has a back edge from one of its nodes to the
header

7

Dominators

• Use concept of dominators in CFG to identify loops
• Node d dominates node n if all paths from the entry node to n go

through d

• Every node dominates itself

• 1 dominates 1, 2, 3, 4

• 2 does not dominate 4

• 3 does not dominate 4

1

2 3

4

Intuition:

• Header of a loop dominates all nodes in loop body
• Back edges = edges whose heads dominate their tails
• Loop identification = back edge identification

8

Immediate Dominators

• CFG entry node dominates all CFG nodes

• If d1 and d2 dominate n, then either
- d1 dominates d2, or
- d2 dominates d1

• d strictly dominates n if d dominates n and d 6= n

• Immediate dominator idom(n) of a node n: the unique last strict
dominator of n on any path from entry node

9

Dominator Tree

• Build a dominator tree as follows:
- Nodes are nodes of control flow graph
- Root is CFG entry node
- Edge from d to n if d immediate dominator of n

1

2

3 4

5

6

7

1

2

7543

6

Control Flow Graph Dominator Tree
10

Exercise

• Build the dominator tree for the following control flow graph

1

2

3

4

5

7

6

11

Exercise

• Build the dominator tree for the following control flow graph

1

2

3

4

5

7

1

7

32

5

4

6 6

11

Data-flow-like Algorithm for Computing Dominators

• Let N = set of all basic blocks

• Lattice: (2N ,⊆)
• Has finite height

• Meet is set intersection, top element is N

{a, b, c}

{a, b} {a, c} {b, c}
{a} {b} {c}

{}
Formulate problem as a system of constraints

• Define dom(n) = set of nodes that dominate n

• dom(n0) = {n0} where n0 is the entry node

• dom(n) =
⋂{dom(m) | m ∈ pred(n)} ∪ {n}

i.e, the dominators of n are the dominators of all of n’s predecessors
and n itself

12

Dominator Computation

1

2

3

4

5 6

7

{1}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

• 7→ 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)

13

Dominator Computation

1

2

3

4

5 6

7

{1}

{1, 2}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

• 7→ 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)

13

Dominator Computation

1

2

3

4

5 6

7

{1}

{1, 2}

{1, 3}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

• 7→ 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)

13

Dominator Computation

1

2

3

4

5 6

7

{1}

{1, 2}

{1, 3}

{1, 3, 4}

{1, 2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}

• 7→ 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)

13

Dominator Computation

1

2

3

4

5 6

7

{1}

{1, 2}

{1, 3}

{1, 3, 4}

{1, 3, 4, 5} {1, 3, 4, 6}

{1, 2, 3, 4, 5, 6, 7}

• 7→ 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)

13

Dominator Computation

1

2

3

4

5 6

7

{1}

{1, 2}

{1, 3}

{1, 3, 4}

{1, 3, 4, 5} {1, 3, 4, 6}

{1, 3, 4, 7}

• 7→ 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)

13

Natural Loops

• Back edge: edge n→ h such that h dominates n

• Natural loop of a back edge n→ h:
- h is loop header
- Set of loop nodes is set of all nodes that can reach n without going
through h

• Algorithm to identify natural loops in CFG
- Compute dominator relation
- Identify back edges
- Compute the loop for each back edge

14

Nested Loops

• If two loops do not have same header then
- Either one loop (inner loop) contained in other (outer loop)
- Or two loops are disjoint

• If two loops have same header, typically unioned and treated as one
loop

Two loops: {1, 2} and {1, 3}
Unioned: {1, 2, 3}

1

2 3

15

Loop Preheader

• Several optimizations add code before header

• Insert a new basic block (called preheader) in the CFG to hold this
code

2

3

4 5

6

1

2

3

4 5

6

1

16

Loop Optimizations

Now we know the loops

Next: optimize these loops

• Loop invariant code motion (this lecture)

• Strength reduction of induction variables

• Induction variable elimination

17

Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration,
move it out of the loop

for(i = 1; i <= N; i++) {

x = x + 1;

// inner loop

for(j = 1; j <= N; j++)

a[i][j] = 100*N + 10*i + j + x;

}

18

Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration,
move it out of the loop

t1 = 100*N;

for(i = 1; i <= N; i++) {

x = x + 1;

// inner loop

for(j = 1; j <= N; j++)

a[i][j] = 100*N + 10*i + j + x;

}

18

Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration,
move it out of the loop

t1 = 100*N;

for(i = 1; i <= N; i++) {

x = x + 1;

// inner loop

for(j = 1; j <= N; j++)

a[i][j] = t1 + 10*i + j + x;

}

18

Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration,
move it out of the loop

t1 = 100*N;

for(i = 1; i <= N; i++) {

x = x + 1;

t2 = 10*i + x;

for(j = 1; j <= N; j++)

a[i][j] = t1 + 10*i + j + x;

}

18

Loop Invariant Code Motion

• If a computation produces the same value in every loop iteration,
move it out of the loop

t1 = 100*N;

for(i = 1; i <= N; i++) {

x = x + 1;

t2 = 10*i + x;

for(j = 1; j <= N; j++)

a[i][j] = t1 + t2 + j + x;

}

18

Loop Invariant Computation

• An instruction a = b OP c is loop-invariant if each operand is:

- Constant, or

- Has all definitions outside the loop, or

- Has exactly one definition, and that is a loop-invariant computation

19

