
Handout 3 (Finite Automata)
Every formal language and compiler course I know of bombards you first with
automata and then to a much, much smaller extend with regular expressions.
As you can see, this course is turned upside down: regular expressions come
first. The reason is that regular expressions are easier to reason about and the
notion of derivatives, although already quite old, only became more widely
known rather recently. Still let us in this lecture have a closer look at automata
and their relation to regular expressions. This will help us with understanding
why the regular expressionmatchers in Python, Ruby and Java are so slowwith
certain regular expressions.

Deterministic Finite Automata
The central definition is:

A deterministic finite automaton (DFA), say A, is given by a five-tuple wriĴen
A(Σ, Qs, Q0, F, δ) where

• Σ is an alphabet,

• Qs is a finite set of states,

• Q0 ∈ Qs is the start state,

• F ⊆ Qs are the accepting states, and

• δ is the transition function.

The transition function determines how to “transition” from one state to the
next state with respect to a character. We have the assumption that these tran-
sition functions do not need to be defined everywhere: so it can be the case
that given a character there is no next state, in which case we need to raise a
kind of “failure exception”. That means actually we have partial functions as
transitions—see the Scala implementation of DFAs later on. A typical example
of a DFA is

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017

1

In this graphical notation, the accepting state Q4 is indicated with double cir-
cles. Note that there can be more than one accepting state. It is also possible
that a DFA has no accepting states at all, or that the starting state is also an ac-
cepting state. In the case above the transition function is defined everywhere
and can also be given as a table as follows:

(Q0, a) → Q1
(Q0, b) → Q2
(Q1, a) → Q4
(Q1, b) → Q2
(Q2, a) → Q3
(Q2, b) → Q2
(Q3, a) → Q4
(Q3, b) → Q0
(Q4, a) → Q4
(Q4, b) → Q4

Weneed to define the notion of what language is accepted by an automaton.
For this we lift the transition function δ from characters to strings as follows:

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

This lifted transition function is often called “delta-hat”. Given a string, we start
in the starting state and take the first character of the string, follow to the next
state, then take the second character and so on. Once the string is exhausted and
we end up in an accepting state, then this string is accepted by the automaton.
Otherwise it is not accepted. This also means that if along the way we hit the
case where the transition function δ is not defined, we need to raise an error. In
our implementation we will deal with this case elegantly by using Scala’s Try.
So a string s is in the language accepted by the automaton A(Σ, Q, Q0, F, δ) iff

δ̂(Q0, s) ∈ F

I let you think about a definition that describes the set of all strings accepted by
an automaton.

My take of a simple Scala implementation for DFAs is given in Figure 1.
As you can see, there are many features of the mathematical definition that are
quite closely reflected in the code. In the DFA-class, there is a starting state,
called start, with the polymorphic type A. There is a partial function delta for
specifying the transitions—these partial functions take a state (of polymorphic
type A) and an input (of polymorphic type C) and produce a new state (of type
A). For the moment it is OK to assume that A is some arbitrary type for states
and the input is just characters. (The reason for having polymorphic types for
the states and the input of DFAs will become clearer later on.)

The most important point in this implemnetation is that I use Scala’s partial
functions for representing the transitions; alternatives would have been Maps

2

1 // DFAs in Scala based on partial functions
2 import scala.util.Try
3

4 // type abbreviation for partial functions
5 type :=>[A, B] = PartialFunction[A, B]
6

7 case class DFA[A, C](start: A, // starting state
8 delta: (A, C) :=> A, // transition (partial fun)
9 fins: A => Boolean) { // final states
10

11 def deltas(q: A, s: List[C]) : A = s match {
12 case Nil => q
13 case c::cs => deltas(delta(q, c), cs)
14 }
15

16 def accepts(s: List[C]) : Boolean =
17 Try(fins(deltas(start, s))) getOrElse false
18 }
19

20 // the example shown earlier in the handout
21 abstract class State
22 case object Q0 extends State
23 case object Q1 extends State
24 case object Q2 extends State
25 case object Q3 extends State
26 case object Q4 extends State
27

28 val delta : (State, Char) :=> State =
29 { case (Q0, 'a') => Q1
30 case (Q0, 'b') => Q2
31 case (Q1, 'a') => Q4
32 case (Q1, 'b') => Q2
33 case (Q2, 'a') => Q3
34 case (Q2, 'b') => Q2
35 case (Q3, 'a') => Q4
36 case (Q3, 'b') => Q0
37 case (Q4, 'a') => Q4
38 case (Q4, 'b') => Q4 }
39

40 val dfa = DFA(Q0, delta, Set[State](Q4))
41

42 dfa.accepts("bbabaab".toList) // true
43 dfa.accepts("baba".toList) // false

Figure 1: A Scala implementation of DFAs using partial functions. Notice some
subtleties: deltas implements the delta-hat construction by lifting the transi-
tion (partial) function to lists of characters. Since delta is given as a partial
function, it can obviously go “wrong” in which case the Try in accepts catches
the error and returns false—that means the string is not accepted. The exam-
ple delta implements the DFA example shown earlier in the handout.

3

or even Lists. One of the main advantages of using partial functions is that
transitions can be quite nicely defined by a series of case statements (see Lines
28 – 38 for an example). If you need to represent an automaton with a sink state
(catch-all-state), you can use Scala’s paĴern matching and write something like

abstract class State
...
case object Sink extends State

val delta : (State, Char) :=> State =
{ case (S0, 'a') => S1

case (S1, 'a') => S2
case _ => Sink

}

I let you think what this DFA looks like in the graphical notation.
The DFA-class has also an argument for specifying final states. In the imple-

mentation it not a set of states, as in the matemathical definition, but a function
from states to booleans (this function is supposed to return true whenever a
state is final; false otherwise). While this boolean function is different from the
sets of states, Scala allows to use sets for such functions (see Line 40 where the
DFA is initialised). Again it will become clear later on why I use functions for
final states, rather than sets.

I let you ponder whether this is a good implementation of DFAs. In doing
so I hope you notice that the Σ and Qs components (the alphabet and the set
of finite states, respectively) are missing from the class definition. This means
that the implementation allows you to do some fishy things you are not meant
to do with DFAs. Which fishy things could that be?

Non-Deterministic Finite Automata
While with DFAs it is always be clear that given a state and a character what
the next state is (potentially none), it will be useful to relax this restriction. That
means we allow states to have several potential successor states. We even al-
low more than one starting state. The resulting construction is called a Non-
Deterministic Finite Automaton (NFA) given also as a five-tupleA(Σ, Qs, Q0s, F, ρ)
where

• Σ is an alphabet,

• Qs is a finite set of states

• Q0s is a set of start states (Q0s ⊆ Qs)

• F are some accepting states with F ⊆ Qs, and

• ρ is a transition relation.

A typical example of a NFA is

4

Q0start Q1 Q2

b

b

a

a

a, b

a

This NFA happens to have only one starting state, but in general there could
be more. Notice that in state Q0 we might go to state Q1 or to state Q2 when
receiving an a. Similarly in state Q1 and receiving an a, we can stay in state Q1
or go to Q2. This kind of choice is not allowed with DFAs. The downside of
this choice is that when it comes to deciding whether a string is accepted by a
NFA we potentially have to explore all possibilities. I let you think which kind
of strings the above NFA accepts.

There are a number of additional points you should note with NFAs. Every
DFA is a NFA, but not vice versa. The ρ in NFAs is a transition relation (DFAs
have a transition function). The difference between a function and a relation
is that a function has always a single output, while a relation gives, roughly
speaking, several outputs. Look again at the NFA above: if you are currently in
the state Q1 and you read a character b, then you can transition to either Q0 or
Q2. Which route, or output, you take is not determined. This non-determinism
can be represented by a relation.

My implementation of NFAs in Scala is shown in Figure 2. Perhaps inter-
estingly, I do not actually use relations for my NFAs, and I also do not use
transition functions that return sets of states (another popular choice for im-
plementing NFAs). For reasons that become clear in a moment, I use sets of
partial functions instead—see Line 7 in Figure 2. DFAs have only one such par-
tial function; my NFAs have a set. Another parameter, starts, is in NFAs a set
of states; fins is again a function from states to booleans. The next function
calculates the set of next states reachable from a single state q by a character c—
this is calculated by going through all the partial functions in the delta-set and
apply q and c (see Line 13). This gives a set of Somes (in case the application
succeeded) and possibly some Nones (in case the partial function is not defined
or produces an error). The Nones are filtered out by the flatMap, leaving the
values inside the Somes. The function nexts just lifts this function to sets of
states. Deltas and accept are similar to the DFA definitions.

The reason for using sets of partial functions for specifying the transitions in
NFAs has to dowith paĴernmatching. Consider the following example: a pop-
ular benchmark regular expression is (.)∗ · a · (.){n} · b · c. The important point
to note is that it uses . in order to represent the regular expression that accepts
any character. A NFA that accepts the same strings as this regular expression
(for n = 3) is as follows:

5

1 // NFAs in Scala based on sets of partial functions
2

3 // type abbreviation for partial functions
4 type :=>[A, B] = PartialFunction[A, B]
5

6 case class NFA[A, C](starts: Set[A], // starting states
7 delta: Set[(A, C) :=> A], // transitions
8 fins: A => Boolean) { // final states
9

10 // given a state and a character, what is the set of next states?
11 // if there is none => empty set
12 def next(q: A, c: C) : Set[A] =
13 delta.flatMap(d => Try(d(q, c)).toOption)
14

15 def nexts(qs: Set[A], c: C) : Set[A] =
16 qs.flatMap(next(_, c))
17

18 def deltas(qs: Set[A], s: List[C]) : Set[A] = s match {
19 case Nil => qs
20 case c::cs => deltas(nexts(qs, c), cs)
21 }
22

23 def accepts(s: List[C]) : Boolean =
24 deltas(starts, s).exists(fins)
25 }

Figure 2: A Scala implementation of NFAs using sets of partial functions. No-
tice some subtleties: Since delta is given as a set of partial functions, each of
them can obviously go “wrong” in which case the Try. The function accepts
implements the acceptance of a string in a breath-first fashion. This can be
costly way of deciding whether a string is accepted in practical contexts.

6

Q0start Q1 Q2 Q3 Q4 Q5 Q6

.

a . . . b c

Also here the . stands for accepting any single character: for example if we are
in Q0 and read an a we can either stay in Q0 (since any character will do for this)
or advance to Q1 (but only if it is an a). Why this is a good benchmark regular
expression is irrelevant here. The point is that this NFA can be conveniently
represented by the code:

val delta = Set[(State, Char) :=> State](
{ case (Q0, 'a') => Q1 },
{ case (Q0, _) => Q0 },
{ case (Q1, _) => Q2 },
{ case (Q2, _) => Q3 },
{ case (Q3, _) => Q4 },
{ case (Q4, 'b') => Q5 },
{ case (Q5, 'c') => Q6 }

)

NFA(Set[State](Q0), delta, Set[State](Q6))

where the .-transitions translate into a underscore-paĴern-matching. Recall
that in Q0 if we read an a we can go to Q1 (by the first partial function in the
set) and also stay in Q0 (by the second partial function). Representing such
transitions in any other way in Scala seems to be somehow awkward; the set of
partial function representation makes them easy to implement.

Look very careful again at the accepts and deltas functions in NFAs and
remember that when accepting a string by an NFA we might have to explore
all possible transitions (recall which state to go to is not unique anymore with
NFAs). The implementation achieves this exploration in a breadth-first search
manner. This is fine for very small NFAs, but can lead to problems when the
NFAs are bigger. Take for example the regular expression (.)∗ · a · (.){n} · b · c
from above. If n is large, say 100 or 1000, then the corresponding NFA will
have 104, respectively 1004, nodes. The problem is that with certain strings
this can lead to 1000 “active” nodes in the breadth-first search, all of which we
need to analyse when determining the next states. This can be a real memory
strain in practical applications. As result, some regular expression matching
engines resort to a depth-first search with backtracking in unsuccessful cases. In
our implementation we can implement a depth-first version of accepts using
Scala’s exists as follows:

7

def search(q: A, s: List[C]) : Boolean = s match {
case Nil => fins(q)
case c::cs =>

delta.exists(d => Try(search(d(q, c), cs)) getOrElse false)
}

def accepts(s: List[C]) : Boolean =
starts.exists(search(_, s))

This depth-first way of exploration seems to work efficiently in many examples
and is much less of strain onmemory. The problem is that the backtracking can
get “catastrophic” in some examples—remember the catastrophic backtracking
from earlier lectures. This depth-first search with backtracking is the reason for
the abysmal performance of some regular expression macthings in Java, Ruby
and Python. I like to show you this next.

Thompson Construction

In order to get an idea what calculations are done in Java & friends, we need
a method for translating regular expressions into automata. The simplest and
mostwell-knownmethod is calledThompsonConstruction, after the TuringAward
winnerKenThompsonwho implemented thismethod in early versions of grep????

The reason for introducing NFAs is that there is a relatively simple (recur-
sive) translation of regular expressions into NFAs. Consider the simple regular
expressions 0, 1 and c. They can be translated as follows:

0 start

1 start

c start c

The case for the sequence regular expression r1 · r2 is as follows: We are given
by recursion two automata representing r1 and r2 respectively.

r1 r2

start . . . start . . .

The first automaton has some accepting states. We obtain an automaton for
r1 · r2 by connecting these accepting stateswith ϵ-transitions to the starting state
of the second automaton. By doing so we make them non-accepting like so:

8

r1 · r2

startϵ
ϵ

ϵ

The case for the choice regular expression r1 + r2 is slightly different: We are
given by recursion two automata representing r1 and r2 respectively.

r1

r2

start

start

. . .

. . .

Each automaton has a single start state and potentially several accepting states.
We obtain a NFA for the regular expression r1 + r2 by introducing a new start-
ing state and connecting it with an ϵ-transition to the two starting states above,
like so

r1 + r2

start

. . .

. . .

ϵ

ϵ

Finally for the ∗-case we have an automaton for r

9

r

start . . .

and connect its accepting states to a new starting state via ϵ-transitions. This
new starting state is also an accepting state, because r∗ can recognise the empty
string. This gives the following automaton for r∗:

r∗

start . . .ϵ

ϵ

ϵ

ϵ

This construction of a NFA from a regular expression was invented by Ken
Thompson in 1968.

Subset Construction

What is interesting is that for every NFA we can find a DFA which recognises
the same language. This can, for example, be done by the subset construction.
Consider again the NFA below on the left, consisting of nodes labeled 0, 1 and
2.

0start

1

2

ϵ

ϵ

a

a

b

nodes a b
{} {} {}
{0} {0, 1, 2} {2}
{1} {1} {}
{2}⋆ {} {2}

{0, 1} {0, 1, 2} {2}
{0, 2}⋆ {0, 1, 2} {2}
{1, 2}⋆ {1} {2}

s: {0, 1, 2}⋆ {0, 1, 2} {2}

The nodes of the DFA are given by calculating all subsets of the set of nodes of
the NFA (seen in the nodes column on the right). The table shows the transition
function for the DFA. The first row states that {} is the sink node which has
transitions for a and b to itself. The next three lines are calculated as follows:

10

• suppose you calculate the entry for the transition for a and the node {0}

• start from the node 0 in the NFA

• do as many ϵ-transition as you can obtaining a set of nodes, in this case
{0, 1, 2}

• filter out all notes that do not allow an a-transition from this set, this ex-
cludes 2 which does not permit a a-transition

• from the remaining set, do as many ϵ-transition as you can, this yields
again {0, 1, 2}

• the resulting set specifies the transition from {0} when given an a

So the transition from the state {0} reading an a goes to the state {0, 1, 2}. Sim-
ilarly for the other entries in the rows for {0}, {1} and {2}. The other rows are
calculated by just taking the union of the single node entries. For example for a
and {0, 1}we need to take the union of {0, 1, 2} (for 0) and {1} (for 1). The start-
ing state of the DFA can be calculated from the starting state of the NFA, that
is 0, and then do as many ϵ-transitions as possible. This gives {0, 1, 2} which
is the starting state of the DFA. The terminal states in the DFA are given by all
sets that contain a 2, which is the terminal state of the NFA. This completes the
subset construction. So the corresponding DFA to the NFA from above is

0, 1, 2start 0, 2

0, 1

1, 2

0

1

2

{}

a

b a

b

a

b

a
b

a b a

b

b

a

a, b

There are two points to note: One is that very often the resulting DFA con-
tains a number of “dead” nodes that are never reachable from the starting state.
For example there is noway to reach node {0, 2} from the starting state {0, 1, 2}.
I let you find the other dead states. In effect the DFA in this example is not a
minimal DFA. Such dead nodes can be safely removed without changing the
language that is recognised by the DFA. Another point is that in some cases,
however, the subset construction produces a DFA that does not contain any
dead nodes…that means it calculates a minimal DFA. Which in turn means
that in some cases the number of nodes by going fromNFAs to DFAs exponen-
tially increases, namely by 2n (which is the number of subsets you can form for
n nodes).

11

Removing all the dead states in the automaton above, gives a much more
legible automaton, namely

0, 1, 2start 2 {}

a

b

b

a

a, b

Now the big question is whether this DFA can recognise the same language as
the NFA we started with. I let you ponder about this question.

Brzozowski’s Method

As said before, we can also go into the other direction—from DFAs to regular
expressions. Brzozowski’s method calculates a regular expression using famil-
iar transformations for solving equational systems. Consider the DFA:

Q0start Q1 Q2

a

b

b

a
a

b

for which we can set up the following equational system

Q0 = 1+ Q0 b + Q1 b + Q2 b (1)
Q1 = Q0 a (2)
Q2 = Q1 a + Q2 a (3)

There is an equation for each node in the DFA. Let us have a look how the right-
hand sides of the equations are constructed. First have a look at the second
equation: the left-hand side is Q1 and the right-hand side Q0 a. The right-hand
side is essentially all possible ways how to end up in node Q1. There is only
one incoming edge from Q0 consuming an a. Therefore the right hand side is
this state followed by character—in this case Q0 a. Now lets have a look at the
third equation: there are two incoming edges for Q2. Therefore we have two
terms, namely Q1 a and Q2 a. These terms are separated by +. The first states
that if in state Q1 consuming an a will bring you to Q2, and the secont that
being in Q2 and consuming an a will make you stay in Q2. The right-hand side
of the first equation is constructed similarly: there are three incoming edges,
therefore there are three terms. There is one exception in that we also “add” 1
to the first equation, because it corresponds to the starting state in the DFA.

12

Having constructed the equational system, the question is how to solve it?
Remarkably the rules are very similar to solving usual linear equational sys-
tems. For example the second equation does not contain the variable Q1 on the
right-hand side of the equation. We can therefore eliminate Q1 from the system
by just substituting this equation into the other two. This gives

Q0 = 1+ Q0 b + Q0 a b + Q2 b (4)
Q2 = Q0 a a + Q2 a (5)

where in Equation (4) we have two occurences of Q0. Like the laws about +
and ·, we can simplify Equation (4) to obtain the following two equations:

Q0 = 1+ Q0 (b + a b) + Q2 b (6)
Q2 = Q0 a a + Q2 a (7)

Unfortunately we cannot make anymore progress with substituting equations,
because both (6) and (7) contain the variable on the left-hand side also on the
right-hand side. Here we need to now use a law that is different from the usual
laws about linear equations. It is called Arden’s rule. It states that if an equation
is of the form q = q r + s then it can be transformed to q = s r∗. Since we can
assume + is symmetric, Equation (7) is of that form: s is Q0 a a and r is a. That
means we can transform (7) to obtain the two new equations

Q0 = 1+ Q0 (b + a b) + Q2 b (8)
Q2 = Q0 a a (a∗) (9)

Now again we can substitute the second equation into the first in order to elim-
inate the variable Q2.

Q0 = 1+ Q0 (b + a b) + Q0 a a (a∗) b (10)

Pulling Q0 out as a single factor gives:

Q0 = 1+ Q0 (b + a b + a a (a∗) b) (11)

This equation is again of the form so that we can apply Arden’s rule (r is b +
a b + a a (a∗) b and s is 1). This gives as solution for Q0 the following regular
expression:

Q0 = 1 (b + a b + a a (a∗) b)∗ (12)

Since this is a regular expression, we can simplify away the 1 to obtain the
slightly simpler regular expression

13

Q0 = (b + a b + a a (a∗) b)∗ (13)

Now we can unwind this process and obtain the solutions for the other equa-
tions. This gives:

Q0 = (b + a b + a a (a∗) b)∗ (14)
Q1 = (b + a b + a a (a∗) b)∗ a (15)
Q2 = (b + a b + a a (a∗) b)∗ a a (a)∗ (16)

Finally, we only need to “add” up the equations which correspond to a ter-
minal state. In our running example, this is just Q2. Consequently, a regular
expression that recognises the same language as the automaton is

(b + a b + a a (a∗) b)∗ a a (a)∗

You can somewhat crosscheck your solution by taking a string the regular ex-
pression can match and and see whether it can be matched by the automaton.
One string for example is aaa and voila this string is also matched by the au-
tomaton.

We should prove that Brzozowski’s method really produces an equivalent
regular expression for the automaton. But for the purposes of this module, we
omit this.

Automata Minimization

As seen in the subset construction, the translation of a NFA to a DFA can result
in a rather “inefficient” DFA. Meaning there are states that are not needed. A
DFA can be minimised by the following algorithm:

1. Take all pairs (q, p) with q ̸= p

2. Mark all pairs that accepting and non-accepting states

3. For all unmarked pairs (q, p) and all characters c test whether

(δ(q, c), δ(p, c))

are marked. If there is one, then also mark (q, p).

4. Repeat last step until no change.

5. All unmarked pairs can be merged.

To illustrate this algorithm, consider the following DFA.

14

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

In Step 1 and 2 we consider essentially a triangle of the form

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

where the lower row is filled with stars, because in the corresponding pairs
there is always one state that is accepting (Q4) and a state that is non-accepting
(the other states).

Now in Step 3 we need to fill in more stars according whether one of the
next-state pairs are marked. We have to do this for every unmarked field until
there is no change anymore. This gives the triangle

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆

⋆

which means states Q0 and Q2, as well as Q1 and Q3 can be merged. This gives
the following minimal DFA

Q0,2start Q1,3 Q4

a

b

b

a

a, b

15

Regular Languages

Given the constructions in the previous sectionswe obtain the following overall
picture:

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

Brzozowski’s
method

By going from regular expressions over NFAs to DFAs, we can always ensure
that for every regular expression there exists a NFA and a DFA that can recog-
nise the same language. Althoughwedid not prove this fact. Similarly by going
fromDFAs to regular expressions, we canmake sure for every DFA there exists
a regular expression that can recognise the same language. Again we did not
prove this fact.

The interesting conclusion is that automata and regular expressions can
recognise the same set of languages:

A language is regular iff there exists a regular expression that recog-
nises all its strings.

or equivalently

A language is regular iff there exists an automaton that recognises
all its strings.

So for decidingwhether a string is recognised by a regular expression, we could
use our algorithm based on derivatives or NFAs or DFAs. But let us quickly
look at what the differences mean in computational terms. Translating a reg-
ular expression into a NFA gives us an automaton that has O(n) nodes—that
means the size of the NFA grows linearly with the size of the regular expres-
sion. The problem with NFAs is that the problem of deciding whether a string
is accepted or not is computationally not cheap. RememberwithNFAswe have
potentially many next states even for the same input and also have the silent
ϵ-transitions. If we want to find a path from the starting state of a NFA to an
accepting state, we need to consider all possibilities. In Ruby and Python this
is done by a depth-first search, which in turn means that if a “wrong” choice is
made, the algorithm has to backtrack and thus explore all potential candidates.
This is exactly the reason why Ruby and Python are so slow for evil regular ex-
pressions. An alternative to the potentially slow depth-first search is to explore
the search space in a breadth-first fashion, but this might incur a big memory
penalty.

16

To avoid the problems with NFAs, we can translate them into DFAs. With
DFAs the problem of deciding whether a string is recognised or not is much
simpler, because in each state it is completely determined what the next state
will be for a given input. So no search is needed. The problem with this is that
the translation to DFAs can explode exponentially the number of states. There-
forewhen this route is taken, we definitely need tominimise the resultingDFAs
in order to have an acceptable memory and runtime behaviour. But remember
the subset construction in the worst case explodes the number of states by 2n.
Effectively also the translation to DFAs can incur a big runtime penalty.

But this does not mean that everything is bad with automata. Recall the
problem of finding a regular expressions for the language that is not recog-
nised by a regular expression. In our implementation we added explicitly such
a regular expressions because they are useful for recognising comments. But in
principle we did not need to. The argument for this is as follows: take a regular
expression, translate it into a NFA and then a DFA that both recognise the same
language. Once you have the DFA it is very easy to construct the automaton for
the language not recognised by a DFA. If the DFA is completed (this is impor-
tant!), then you just need to exchange the accepting and non-accepting states.
You can then translate this DFA back into a regular expression and that will be
the regular expression that canmatch all strings the original regular expression
could notmatch.

It is also interesting that not all languages are regular. Themostwell-known
example of a language that is not regular consists of all the strings of the form

an bn

meaning strings that have the same number of as and bs. You can try, but you
cannot find a regular expression for this language and also not an automaton.
One can actually prove that there is no regular expression nor automaton for
this language, but again that would lead us too far afield for what we want to
do in this module.

Further Reading
Compare what a “human expert” would create as an automaton for the regular
expression a(b + c)∗ and what the Thomson algorithm generates.

17

