Automata and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk

Office: Sr.27 (st floor Strand Building)

Slides: KEATS (also home work and course-
work is there)



Regular Expressions

In programming languages they are often used to
recognise:

symbols, digits

identifiers

numbers (non-leading zeros)
keywords

comments

http://www.regexper.com


http://www.regexper.com

Last Week

Last week I showed you a regular expression
matcher that works provably correct in all cases
(we only started with the proving part though)

matchessr if and only if s € L(r)

by Janusz Brzozowski (1964)



The Derivative of a Rexp

derc (D) =0

derc (€) <o

derc (d) “ ifc = d then € else &
derc (ri+r,) < dercr, + dercr,
derc(r-r,) = if nullable(r,)

then (dercr,) -r, +dercr,
else (dercr,) -r,

derc (r*) 2 (dercr) - (r*)

ders || r =r

ders (c::s)r = derss (dercr)



Input: string @bc and regular expression r

Q derar
Q derb (derar)
Q derc(derb (derar))



Input: string @bc and regular expression r

Q derar
Q derb (derar)
Q derc(derb (derar))

@ finally check whether the last regular expression
can match the empty string



We proved already
nullable(r) if and only if [| € L(r)

by induction on the regular expression.



We proved already
nullable(r) if and only if [| € L(r)

by induction on the regular expression.

Any Questions?



We need to prove
L(dercr) = Derc (L(r))

by induction on the regular expression.



Proofs about Rexps

e P holds for &, € and ¢

e P holds for »; + r, under the assumption that P
already holds for 7, and 7.

e P holds for 7, - r, under the assumption that P
already holds for 7, and 7.

e P holds for " under the assumption that P
already holds for 7.



Proofs about Natural
Numbers and Strings

@ P holds for o and

e P holds for # + 1 under the assumption that P
already holds for »

e P holds for [] and

@ P holds for c::s under the assumption that P
already holds for s



Regular Expressions

rou= o null
| € empty string / ”” / ]
| ¢ character
| oo, sequence
| i+, alternative / choice
| star (zero or more)

How about ranges [¢-z|, 7T and ~ r? Do they
increase the set of languages we can recognise?



Negation of Regular Expr’s

o ~r  (everything that r cannot recognise)

def

o L(~r) = UNIV — L(r)
o nullable(~ r) < not (nullable(r))

o derc(~r) = ~ (dercr)



Negation of Regular Expr’s

o ~r  (everything that r cannot recognise)

o L(~7r) EUNIV —L(r)
o nullable(~ r) < not (nullable(r))

o derc(~r) = ~ (dercr)

Used often for recognising comments:

ok o (gl o/ ae])) e/



Negation

Assume you have an alphabet consisting of the
letters #, 4 and ¢ only. Find a (basic!) regular
expression that matches all strings except @b and ac!



Automata

A deterministic finite automaton, DFA,
consists of:
a set of states Q|
one of these states is the start state ¢,
some states are accepting states F, and
there is transition function ¢
which takes a state as argument and a character and

produces a new state; this function might not be
everywhere defined

A(Q&?OIF/5>



start—»%—»QI—d»%:)db

e, e

bcqz—>q3

o the start state can be an accepting state
e it is possible that there is no accepting state

e all states might be accepting (but this does not
necessarily mean all strings are accepted)



for this automaton ¢ is the function

(gor@) = v (gva) = g4 (qy2) = g4
(90/8) = 4. (91,0) = 4= (94/8) = 4,



Accepting a String

Given
A(.90,F,9)
you can define
5g.1) = q
g



Accepting a String

Given

Whether a string s is accepted by A4?

S(qo,s) cF



Regular Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.



Regular Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. 2"4" is not



Regular Languages (2)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently
A language is regular iff there exists a

deterministic finite automaton that recognises all
its strings.



Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:

a finite set of states

one of these states is the start state

some states are accepting states, and

there is transition relation

(g,2) — ¢»

v€) — g,
(goa) g, €74



Two NFA Examples

start




Rexp to NFA



Caser; - r,

By recursion we are given two automata:

7y &)

O O
start b @ start .. @
O O

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.



start . e o e ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.



Caser;+r,

By recursion we are given two automata:

start —»( )

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.

000 ©OO




Caser; +r,

r+r,

start

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.

AFL 03, King’s College London — p. 23/39



Caser”

By recursion we are given an automaton for 7:

O
start s ©
O

r




start




start

Why can’t we just have an epsilon transition from
the accepting states to the starting state?



Subset Construction




Subset Construction




Subset Construction

start




Subset Construction

nodes a b
{} {r
{o} |{o1,2} {2}
start {1} {1} 1}
{2} {+ {2}
{o,1} |{o,1,2} {2}
{o,2} |{o,1,2} {2}
{1,2} {r} {2}
{o,1,2} |{o,1,2} {2}




Subset Construction

start




The Result




Removing Dead States

DFA: NFA:




Regexps and Automata

Thompson’s subset
construction construction

Regexps * NFAs * DFAs



Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DI As

minimisation



DFA Minimisation

Take all pairs (¢,p) with g # p

Mark all pairs that accepting and non-accepting
states

For all unmarked pairs (g,p) and all characters ¢
test whether

(0(g,¢),6(p,c))

are marked. If yes in at least one case, then also

mark (g,p).

Repeat last step until no change.
All unmarked pairs can be merged.



a
start—»%—»%—»%';)db

e, [

bC:qz—>%
b

q:

q.

93

gal x| % | % | %

9o 91 92 93



a

start—>%—>%—>94:.)db g1 | *
\jb d 7. |*
th%—»% o s o e

P 9o 91 9> 93
a,b
a ()

A\ d
start —{4o,2 913 —>94
v

1) &

b

minimal automaton




Alternatives
a,b




Alternatives

@ exchange initial / accepting states



Alternatives

@ exchange initial / accepting states

@ reverse all edges



Alternatives

@ exchange initial / accepting states
@ reverse all edges
@ subset construction = DFA



Alternatives
a,b

exchange initial / accepting states
reverse all edges
subset construction = DFA

remove dead states



Alternatives
a,b

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more = minimal DFA



Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DE As

minimisation



Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DE As

\/ minimisation



DFA to Rexp



start



a
start @ue :D a

b b

do = 240 T 341 T 44
q: 2¢do T3¢ T 14,
g, = IQO‘FS%‘FZ%



start



start

go = €+ qgob+q.6+q,b

g1 = god
g = ¢q1a+q,a



a
a
s @D D>

go = €+ qgob+q.6+q,b

g1 = god
g = ¢q1a+q,a

Arden’s Lemma:

Iftg=¢gr+s then g =s7r"



Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DE As

\/ minimisation



Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently
A language is regular iff there exists a

deterministic finite automaton that recognises all
its strings.



Regular Languages (3)

A language is regular iff there exists a regular

expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all

its strings.

Why is every finite set of strings a regular
language?



Given the function

(=
o
-

rev(@) =
rev(€) dzef
rev(c) = ¢
rev(r, +r,) = rev(r,) + rev(r,)
rev(r, - r,) Z rev(r,) - rev(r,)
def
rev(r*) =rev(r)*

and the set
RevAE {5 |se A}
prove whether

L(rev(r)) = Rev(L(r))



