
Coursework 2 (Strand 1)
This coursework is worth 5% and is due on 6 November at 16:00. You are asked
to implement the Sulzmann & Lu tokeniser for the WHILE language. You can
do the implementation in any programming language you like, but you need
to submit the source code with which you answered the questions, otherwise
a mark of 0% will be awarded. You can submit your answers in a txt-file or as
pdf.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code from
KEATS and the code I showed during the lectures, which you can both use.
You can also use your own code from the CW 1.

Question 1 (marked with 1%)
To implement a tokeniser for theWHILE language, you first need to design the
appropriate regular expressions for the following eight syntactic entities:

1. keywords are

while, if, then, else, do, for, to, true, false, read, write,
skip

2. operators are

+, -, *, %, /, ==, !=, >, <, :=, &&, ||

3. strings are enclosed by "…"

4. parentheses are (, {,) and }

5. there are semicolons ;

6. whitespaces are either " " (one or more) or \n

7. identifiers are leĴers followed by underscores __, leĴers or digits

8. numbers are 0, 1, …

You can use the basic regular expressions

∅, ϵ, c, r1 + r2, r1 · r2, r∗

but also the following extended regular expressions

1

[c1c2 . . . cn] a range of characters
r+ one or more times r
r? optional r
r{n} n-times r

Try to design your regular expressions to be as small as possible.

Question 2 (marked with 3%)
Implement the Sulzmann&Lu tokeniser from the lectures. For this you need to
implement the functions nullable and der (you can use your code from CW 1),
as well as mkeps and inj. These functions need to be appropriately extended
for the extended regular expressions from Q1. Write down the clauses for

mkeps([c1c2 . . . cn])
def
= ?

mkeps(r+) def
= ?

mkeps(r?)
def
= ?

mkeps(r{n})
def
= ?

inj ([c1c2 . . . cn]) c . . . def
= ?

inj (r+) c . . . def
= ?

inj (r?) c . . . def
= ?

inj (r{n}) c . . . def
= ?

where inj takes three arguments: a regular expression, a character and a value.
Also add the record regular expression from the lectures to your tokeniser and
implement a function, say env, that returns all assignments from a value (such
that you can extract easily the tokens from a value).

Finally give the tokens for your regular expressions from Q1 and the string

"read n;"

and use your env function to give the token sequence.

Question 3 (marked with 1%)
Extend your tokenizer from Q2 to also simplify regular expressions after each
derivation step and rectify the computed values after each injection. Use this
tokenizer to tokenize the programs in Figure 1 and 2. Give the tokens of these
programs where whitespaces are filtered out.

2

1 write "Fib";
2 read n;
3 minus1 := 0;
4 minus2 := 1;
5 while n > 0 do {
6 temp := minus2;
7 minus2 := minus1 + minus2;
8 minus1 := temp;
9 n := n - 1
10 };
11 write "Result";
12 write minus2

Figure 1: Fibonacci program in the WHILE language.

1 start := 1000;
2 x := start;
3 y := start;
4 z := start;
5 while 0 < x do {
6 while 0 < y do {
7 while 0 < z do { z := z - 1 };
8 z := start;
9 y := y - 1
10 };
11 y := start;
12 x := x - 1
13 }

Figure 2: The three-nested-loops program in the WHILE language. Usually
used for timing measurements.

3

