
Automata and
Formal Languages (10)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 10, King’s College London, 4. December 2013 – p. 1/29

There are more problems,
than there are programs.

There must be a problem for
which there is no program.

AFL 10, King’s College London, 4. December 2013 – p. 2/29

There are more problems,
than there are programs.

There must be a problem for
which there is no program.

AFL 10, King’s College London, 4. December 2013 – p. 2/29

Last Week
if ∅ does not occur in r then L(r) ̸= {}

holds, or equivalently

L(r) = {} implies ∅ occurs in r.

occurs(∅)
def
= true

occurs(ϵ)
def
= false

occurs(c)
def
= false

occurs(r1 + r2)
def
= occurs(r1) ∨ occurs(r2)

occurs(r1 · r2)
def
= occurs(r1) ∨ occurs(r2)

occurs(r∗)
def
= occurs(r)

AFL 10, King’s College London, 4. December 2013 – p. 3/29

Last Week
if ∅ does not occur in r then L(r) ̸= {}

holds, or equivalently

L(r) = {} implies ∅ occurs in r.

occurs(∅)
def
= true

occurs(ϵ)
def
= false

occurs(c)
def
= false

occurs(r1 + r2)
def
= occurs(r1) ∨ occurs(r2)

occurs(r1 · r2)
def
= occurs(r1) ∨ occurs(r2)

occurs(r∗)
def
= occurs(r)

AFL 10, King’s College London, 4. December 2013 – p. 3/29

Functional Programming

AFL 10, King’s College London, 4. December 2013 – p. 4/29

def fib(n) = if n == 0 then 0
else if n == 1 then 1
else fib(n - 1) + fib(n - 2);

def fact(n) = if n == 0 then 1 else n * fact(n - 1);

def ack(m, n) = if m == 0 then n + 1
else if n == 0 then ack(m - 1, 1)
else ack(m - 1, ack(m, n - 1));

def gcd(a, b) = if b == 0 then a else gcd(b, a % b);

Exp → Var | Num
| Exp + Exp | ... | (Exp)
| if BExp then Exp else Exp
| write Exp
| Exp ; Exp
| FunName (Exp,...,Exp)

BExp → …
Decl → Def ; Decl

| Exp
Def → def FunName(x1,..., xn) = Exp

AFL 10, King’s College London, 4. December 2013 – p. 5/29

Abstract Syntax Tree

AFL 10, King’s College London, 4. December 2013 – p. 6/29

abstract class Exp
abstract class BExp
abstract class Decl

case class
Def(name: String, args: List[String], body: Exp)

extends Decl
case class Main(e: Exp) extends Decl

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequ(e1: Exp, e2: Exp) extends Exp

case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

Mathematical Functions

Compilation of some mathematical functions:

Aop(”+”, a1, a2) ⇒ ...iadd
Aop(”-”, a1, a2) ⇒ ...isub
Aop(”*”, a1, a2) ⇒ ...imul
Aop(”/”, a1, a2) ⇒ ...idiv
Aop(”%”, a1, a2) ⇒ ...irem

AFL 10, King’s College London, 4. December 2013 – p. 7/29

Boolean Expressions
Compilation of boolean expressions:

... code of b.. code of cs1.. code of cs2..

conditional jump

Bop(”==”, a1, a2) ⇒ ...if_icmpne...
Bop(”!=”, a1, a2) ⇒ ...if_icmpeq...
Bop(”<”, a1, a2) ⇒ ...if_icmpge...
Bop(”<=”, a1, a2) ⇒ ...if_icmpgt...

AFL 10, King’s College London, 4. December 2013 – p. 8/29

Sequences
Compiling arg1 ; arg2:

AFL 10, King’s College London, 4. December 2013 – p. 9/29

...arg1...
pop
...arg1...

Write
Compiling write(arg):

AFL 10, King’s College London, 4. December 2013 – p. 10/29

...arg...
dup
invokestatic XXX/XXX/write(I)V

case Write(a1) => {
compile_exp(a1, env) ++
List(”dup\n”,

”invokestatic XXX/XXX/write(I)V\n”)
}

Functions

AFL 10, King’s College London, 4. December 2013 – p. 11/29

.method public static write(I)V
.limit locals 5
.limit stack 5
iload 0
getstatic java/lang/System/out Ljava/io/PrintStream;
swap
invokevirtual java/io/PrintStream/println(I)V
return

.end method

We will need for definitions
.method public static f (I...I)I

.limit locals ??

.limit stack ??
??

.end method

Stack Estimation
def max_stack_exp(e: Exp): Int = e match {

case Call(_, args) => args.map(max_stack_exp).sum
case If(a, e1, e2) => max_stack_bexp(a) +
(List(max_stack_exp(e1), max_stack_exp(e1)).max)

case Write(e) => max_stack_exp(e) + 1
case Var(_) => 1
case Num(_) => 1
case Aop(_, a1, a2) =>
max_stack_exp(a1) + max_stack_exp(a2)

case Sequ(e1, e2) =>
List(max_stack_exp(e1), max_stack_exp(e2)).max

}

def max_stack_bexp(e: BExp): Int = e match {
case Bop(_, a1, a2) =>
max_stack_exp(a1) + max_stack_exp(a2)

}

AFL 10, King’s College London, 4. December 2013 – p. 12/29

Successor

AFL 10, King’s College London, 4. December 2013 – p. 13/29

.method public static suc(I)I

.limit locals 1

.limit stack
iload 0
ldc 1
iadd
ireturn

.end method
..def suc(x) = x + 1;

Addition

AFL 10, King’s College London, 4. December 2013 – p. 14/29

.method public static add(II)I

.limit locals 2

.limit stack 4
iload 0
ldc 0
if_icmpne If_else_2
iload 1
goto If_end_3

If_else_2:
iload 0
ldc 1
isub
iload 1
invokestatic defs/defs/add(II)I
invokestatic defs/defs/suc(I)I

If_end_3:
ireturn

.end method

..
def add(x, y) =

if x == 0 then y
else suc(add(x - 1, y));

Factorial

AFL 10, King’s College London, 4. December 2013 – p. 15/29

.method public static facT(II)I

.limit locals 2

.limit stack 4
iload 0
ldc 0
if_icmpne If_else_2
iload 1
goto If_end_3

If_else_2:
iload 0
ldc 1
isub
iload 0
iload 1
imul
invokestatic fact/fact/facT(II)I

If_end_3:
ireturn

.end method

..
def facT(n, acc) =

if n == 0 then acc
else facT(n - 1, n * acc);

AFL 10, King’s College London, 4. December 2013 – p. 16/29

.method public static facT(II)I

.limit locals 2

.limit stack 4
facT_Start:

iload 0
ldc 0
if_icmpne If_else_2
iload 1
goto If_end_3

If_else_2:
iload 0
ldc 1
isub
iload 0
iload 1
imul
istore 1
istore 0
goto facT_Start

If_end_3:
ireturn

.end method

..
def facT(n, acc) =

if n == 0 then acc
else facT(n - 1, n * acc);

Tail Recursion
A call to f(args) is usually compiled as

args onto stack
invokestatic .../f

A call is in tail position provided:

if Bexp then Exp else Exp

Exp ; Exp

Exp op Exp

then a call f(args) can be compiled as
prepare environment
jump to start of function

AFL 10, King’s College London, 4. December 2013 – p. 17/29

Tail Recursion
A call to f(args) is usually compiled as

args onto stack
invokestatic .../f

A call is in tail position provided:

if Bexp then Exp else Exp

Exp ; Exp

Exp op Exp

then a call f(args) can be compiled as
prepare environment
jump to start of function

AFL 10, King’s College London, 4. December 2013 – p. 17/29

Tail Recursive Call

AFL 10, King’s College London, 4. December 2013 – p. 18/29

def compile_expT(a: Exp, env: Mem, name: String): Instrs =
...
case Call(n, args) => if (name == n)
{

val stores = args.zipWithIndex.map
{ case (x, y) => ”istore ” + y.toString + ”\n” }

args.flatMap(a => compile_expT(a, env, ””)) ++
stores.reverse ++
List (”goto ” + n + ”_Start\n”)

}
else
{

val is = ”I” * args.length
args.flatMap(a => compile_expT(a, env, ””)) ++
List (”invokestatic XXX/XXX/” + n + ”(” + is + ”)I\n”)

}

There are more problems,
than there are programs.

There must be a problem for
which there is no program.

AFL 10, King’s College London, 4. December 2013 – p. 19/29

There are more problems,
than there are programs.

There must be a problem for
which there is no program.

AFL 10, King’s College London, 4. December 2013 – p. 19/29

Subsets

A ⊆ B and B ⊆ A

then A = B

AFL 10, King’s College London, 4. December 2013 – p. 20/29

Injective Function

f is an injective function iff

∀xy. f (x) = f (y) ⇒ x = y

AFL 10, King’s College London, 4. December 2013 – p. 21/29

Cardinality

|A| def
= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

AFL 10, King’s College London, 4. December 2013 – p. 22/29

Cardinality

|A| def
= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

AFL 10, King’s College London, 4. December 2013 – p. 22/29

Natural Numbers

N def
= {0, 1, 2, 3,}

A is countable iff |A| ≤ |N|

AFL 10, King’s College London, 4. December 2013 – p. 23/29

Natural Numbers

N def
= {0, 1, 2, 3,}

A is countable iff |A| ≤ |N|

AFL 10, King’s College London, 4. December 2013 – p. 23/29

First Question

|N − {0}| ? |N|

≥ or ≤ or =

AFL 10, King’s College London, 4. December 2013 – p. 24/29

|N − {0, 1}| ? |N|

|N − O| ? |N|

O def
= odd numbers {1, 3, 5......}

E def
= even numbers {0, 2, 4......}

AFL 10, King’s College London, 4. December 2013 – p. 25/29

|N − {0, 1}| ? |N|

|N − O| ? |N|

O def
= odd numbers {1, 3, 5......}

E def
= even numbers {0, 2, 4......}

AFL 10, King’s College London, 4. December 2013 – p. 25/29

|N − {0, 1}| ? |N|

|N − O| ? |N|

O def
= odd numbers {1, 3, 5......}

E def
= even numbers {0, 2, 4......}

AFL 10, King’s College London, 4. December 2013 – p. 25/29

|N ∪ −N| ? |N|

N def
= positive numbers {0, 1, 2, 3,}

−N def
= negative numbers {0,−1,−2,−3,}

AFL 10, King’s College London, 4. December 2013 – p. 26/29

A is countable if there exists an
injective f : A → N

A is uncountable if there does not
exist an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?

AFL 10, King’s College London, 4. December 2013 – p. 27/29

A is countable if there exists an
injective f : A → N

A is uncountable if there does not
exist an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?
AFL 10, King’s College London, 4. December 2013 – p. 27/29

Halting Problem

Assume a program H that decides for all
programs A and all input data D whether

H(A,D)
def
= 1 iff A(D) terminates

H(A,D)
def
= 0 otherwise

AFL 10, King’s College London, 4. December 2013 – p. 28/29

Halting Problem (2)

Given such a program H define the
following program C: for all programs A

C(A)
def
= 0 iff H(A,A) = 0

C(A)
def
= loops otherwise

AFL 10, King’s College London, 4. December 2013 – p. 29/29

Contradiction

H(C,C) is either 0 or 1.

H(C,C) = 1
def H⇒ C(C) ↓ def C⇒ H(C,C) = 0

H(C,C) = 0
def H⇒ C(C) loops def C⇒

H(C,C) = 1

Contradiction in both cases. So H cannot exist.

AFL 10, King’s College London, 4. December 2013 – p. 30/29

