Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk Office: N7.07 (North Wing, Bush House) Slides: KEATS (also home work is there)

Compilers & Boeings 777

First flight in 1994. They want to achieve triple redundancy in hardware faults.

They compile 1 Ada program to

• Intel 80486

- Motorola 68040 (old Macintosh's)
- AMD 29050 (RISC chips used often in laser printers) using 3 independent compilers.

Compilers & Boeings 777

First flight in 1994. They want to achieve triple redundancy in hardware faults.

They compile 1 Ada program to

• Intel 80486

- Motorola 68040 (old Macintosh's)
- AMD 29050 (RISC chips used often in laser printers) using 3 independent compilers.

Airbus uses C and static analysers. Recently started using CompCert.

- verified a microkernel operating system (*≈*8000 lines of C code)
- US DoD has competitions to hack into drones; they found that the isolation guarantees of seL4 hold up
- CompCert and seL4 sell their code

POSIX Matchers

Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

 i f f o o b l a

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

 $i \mid f \mid$ b $i \mid a$

POSIX Matchers

Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

 i f f o o b l a

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

 $i \mid f \mid b \mid l \mid a$

Kuklewicz: most POSIX matchers are buggy http://www.haskell.org/haskellwiki/Regex_Posix *der c* (**0**) $\stackrel{\text{def}}{=} \mathbf{0}$ *der c* (**1**) $\stackrel{\text{def}}{=} 0$ *der c* (*d*) $\stackrel{\text{def}}{=}$ *if* $c = d$ *then* **1** *else* **0** *der c* $(r_1 + r_2)$ $\stackrel{\text{def}}{=}$ (*der c r*₁) + (*der c r*₂) *der c* $(r_1 \cdot r_2)$ $\stackrel{\text{def}}{=}$ *if nullable* (r_1) *then* $((der c r_1) \cdot r_2) + (der c r_2)$ *else* (*der c r*₁) \cdot *r*₂ *der c* (*r ∗*) $\stackrel{\text{def}}{=}$ $(\text{der } c \ r) \cdot (r^*)$ *der c* (*r {n}*) $\stackrel{\text{def}}{=}$ *if* $n = 0$ *then* 0 $\mathsf{else}\ \mathsf{if}\ \mathsf{null} \mathsf{able}(r)\ \mathsf{then}\ (\mathsf{der}\ \mathsf{c}\ r)\cdot (r^{\{\mathsf{n}-1\}})$ *else* (*der c r*) *·* (*r {n−*1*}*) *der c* (*r {↑n}*) $\stackrel{\text{def}}{=}$ *if* $n = 0$ then **0** *else* (*der c r*) *·* (*r {↑n−*1*}*)

Proofs about Rexps

Remember their inductive definition:

```
r ::= 0
        | 1
        | c
        \vert r_1 \cdot r_2\vert r_1 + r_2 \vert| r
∗
        | r
{n}
        | r
{↑n}
```
If we want to prove something, say a property *P*(*r*), for all regular expressions *r* then …

Proofs about Rexp (2)

- *P* holds for **0**, **1** and c
- P holds for $r_1 + r_2$ under the assumption that P already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r [∗]* under the assumption that *P* already holds for *r*.

…

Proofs about Strings

If we want to prove something, say a property *P*(*s*), for all strings *s* then …

- *P* holds for the empty string, and
- *P* holds for the string *c*::*s* under the assumption that *P* already holds for *s*

Correctness of the Matcher

• We want to prove

matches r s if and only if $s \in L(r)$

where *matches* $r s \stackrel{\text{def}}{=} \text{nullable}(\text{ders } s r)$

Correctness of the Matcher

• We want to prove

matches r s if and only if $s \in L(r)$

where *matches* $r s \stackrel{\text{def}}{=} \textit{nullable}(\textit{ders} \ s \ r)$

• We can do this, if we know

 $L(\text{der } c \ r) = \text{Der } c \ (L(r))$

Some Lemmas

- *Der c* (*A ∪ B*) = (*Der c A*) *∪* (*Der c B*)
- If [] *∈ A* then $Der c(A \otimes B) = (Der c A) \otimes B \cup (Der c B)$
- If [] *̸∈ A* then *Der c* (*A* @ *B*) = (*Der c A*) @ *B*
- $Der c(A^*) = (Der c A) @ A^*$

(interesting case)

Why?

 W hy does *Der c* $(A^*) = (Der c A) @ A^*$ hold?

$$
Der c (A^*) = Der c (A^* - \{[]\})
$$

= Der c ((A - \{[]\}) @ A^*)
= (Der c (A - \{[]\})) @ A^*
= (Der c A) @ A^*

using the facts *Der c A* = *Der c* $(A - \{[]\})$ and $(A - \{[]\}) \otimes A^* = A^* - \{[]\}$

POSIX Spec

…

Sulzmann & Lu Paper

 \bullet I have no doubt the algorithm is correct $-$ the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :)

Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

Sulzmann & Lu Paper

 \bullet I have no doubt the algorithm is correct $-$ the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :)

Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

Sulzmann & Lu Paper

 \bullet I have no doubt the algorithm is correct $-$ the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when

Lemma 3 (Projection and Injection). Let r be a regular expression, l a Letter and v a parse tree.

1. If $\vdash v : r$ and $|v| = lw$ for some word w, then $\vdash proj_{(r,l)} v : r \setminus l$.

2. If $v = r \setminus l$ then $\left(proj_{(r,l)} \circ inj_{r \setminus l} \right) v = v$.

3. If $\vdash v : r$ and $|v| = lw$ for some word w, then $(inj_{r\setminus l} \circ proj_{(r,l)})$ $v = v$.

MS:BUG[Come accross this issue when going back to our constructive reg-ex work] Consider \vdash [Right (), Left a] : $(a + \epsilon)^*$. However, $proj_{((a+\epsilon)^*,a)}$ [Right (), Left a] fails! The point is that proj only works correctly if applied on POSIX parse trees.

 $MS: Possible$ fixes We only ever apply $proj$ on Posix parse trees.

For convenience, we write " $\vdash v : r$ is POSIX" where we mean that $\vdash v : r$ holds and v is the POSIX parse tree of r for word $|v|$.

Lemma 2 follows from the following statement.