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CFL, King’s College London – p. 1/13



Compilers & Boeings 777
First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.
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seL4 / Isabelle

verified a microkernel operating system (≈8000 lines of
C code)

US DoD has competitions to hack into drones; they
found that the isolation guarantees of seL4 hold up

CompCert and seL4 sell their code
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POSIXMatchers
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

i f f o o b l a

Rule priority: For a particular longest initial substring,
the first regular expression that can match determines
the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix
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der c (0) def
= 0

der c (1) def
= 0

der c (d)
def
= if c = d then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

der c (r{n})
def
= if n = 0 then 0

else if nullable(r) then (der c r) · (r{↑n−1})
else (der c r) · (r{n−1})

der c (r{↑n})
def
= if n = 0 then 0

else (der c r) · (r{↑n−1})
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Proofs about Rexps
Remember their inductive definition:

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2
| r∗

| r{n}

| r{↑n}

If we want to prove something, say a property P(r), for
all regular expressions r then …
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Proofs about Rexp (2)

P holds for 0, 1 and c

P holds for r1 + r2 under the assumption that P already
holds for r1 and r2.

P holds for r1 · r2 under the assumption that P already
holds for r1 and r2.

P holds for r∗ under the assumption that P already holds
for r.
…

CFL, King’s College London – p. 7/13



Proofs about Strings

If we want to prove something, say a property P(s), for
all strings s then …

P holds for the empty string, and

P holds for the string c :: s under the assumption that P
already holds for s
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Correctness of theMatcher

We want to prove

matches r s if and only if s ∈ L(r)

wherematches r s def
= nullable(ders s r)

We can do this, if we know

L(der c r) = Der c (L(r))
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Some Lemmas

Der c (A∪ B) = (Der c A) ∪ (Der c B)

If [] ∈ A then
Der c (A@ B) = (Der c A)@ B ∪ (Der c B)

If [] ̸∈ A then
Der c (A@ B) = (Der c A)@ B

Der c (A∗) = (Der c A)@A∗

(interesting case)
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Why?
Why does Der c (A∗) = (Der c A)@A∗ hold?

Der c (A∗) = Der c (A∗ − {[]})
= Der c ((A− {[]})@A∗)

= (Der c (A− {[]}))@A∗

= (Der c A)@A∗

using the facts Der c A = Der c (A− {[]}) and
(A− {[]})@A∗ = A∗ − {[]}
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POSIX Spec

[] ∈ 1 → Empty c ∈ c → Char(c)

s ∈ r1 → v
s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s ̸∈ L(r1)
s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1
s2 ∈ r2 → v2
¬(∃s3 s4. s3 ̸= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)
…
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Sulzmann& Lu Paper
I have no doubt the algorithm is correct — the problem
is I do not believe their proof.

“How could I miss this? Well, I was rather careless when
stating this Lemma :)
Great example how formal machine checked proofs (and
proof assistants) can help to spot flawed reasoning steps.”
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