
CSCI 742 - Compiler Construction

Lecture 9
Ambiguous Grammars

Instructor: Hossein Hojjat

February 5, 2018

“Fighting tigers can be dangerous”

... Let’s talk about ambiguity!
1

Parse Tree

• Context-Free Grammar (CFG) is a 4-tuple G = (T,N, S,R)

• Parse trees are trees where
- root is labeled with the start symbol S
- internal nodes are labeled with symbols ∈ N
- leaf nodes are labeled with symbols ∈ T ∪ {ε}
- if v is a node with label X and its child nodes v1, · · · , vn are labeled
with X1, · · · , Xn then

X → X1 · · ·Xn is a production rule ∈ R

Example.

Grammar: G = ({(,)}, {S}, S,R) where

R =

{
S → SS | (S) | ()

}
Derivation:

S ⇒ SS ⇒ (S)S ⇒ (())S ⇒ (())()

S

S

S

S()

()

()

2

Leftmost and Rightmost Derivations

S → SS | (S) | ()

With this grammar there is a choice of variables to expand

Sample derivation:

S ⇒ SS ⇒ SSS ⇒ S()S ⇒ S()()⇒ ()()()

Leftmost derivation: always expand the leftmost variable first

S ⇒ SS ⇒ SSS ⇒ ()SS ⇒ ()()S ⇒ ()()()

Rightmost derivation: always expand the rightmost variable first

S ⇒ SS ⇒ SSS ⇒ SS()⇒ S()()⇒ ()()()

3

Ambiguous Grammars

• Ambiguous CFG:
there is a word in the language that has two or more parse trees

• Example:

S → SS | (S) | ()

Two parse trees for ()()()

S

S

S

S

()

()

()

S

S

S

S

S

()

()

()

S

4

Ambiguity, Left- and Rightmost Derivations

• To show that a grammar is ambiguous:

1) Give two different parse trees for a word, or

2) Give two different leftmost derivations for a word, or

3) Give two different rightmost derivations for a word

• One leftmost and one rightmost derivation for a word is not sufficient

• Leftmost and rightmost derivations might correspond to the same
parse tree

5

One leftmost and one rightmost is Insufficient

• Grammar for additive arithmetic expressions:

E → E + T

E → T

T → num

• Derivation for num + num:

Leftmost Derivation:

E ⇒ E + T

⇒ T + T

⇒ num+ T

⇒ num+ num

E

E T
+

T

num

num

Rightmost Derivation:

E ⇒ E + T

⇒ E + num

⇒ T + num

⇒ num+ num

6

Ambiguity is Bad

• Sometimes ambiguity in grammar can leave meaning of some
programs ill-defined

Example: <cmd> ::= if <bool> then <cmd>

| if <bool> then <cmd> else <cmd>

• Do not know if else clause is paired with the outermost or with the
innermost then

if (x > 0) then

if (y > 0) then

print(1)

else

print(2)

<cmd>

if <bool> then <cmd> else <cmd>

if <bool> then <cmd>

<cmd>

if <bool> then <cmd> else <cmd>

if <bool> then <cmd>

7

Ambiguity

• Ambiguity is a property of grammars not languages

• For the balanced parentheses language, here is another CFG which is
unambiguous:

B → (RB | ε
R→) | (RR

• Start symbol B generates balanced strings

• R generates strings that have one more right parentheses than left

8

Example: Unambiguous Grammar

B → (RB | ε
R→) | (RR

• This grammar constructs a unique leftmost derivation for a given
balanced string of parentheses

• When scanning the input string from left to right:

• If we need to expand B:
• If the next symbol is (then use B → (RB
• If it is at the end then use B → ε

• If we need to expand R
• If the next symbol is) then use R→)
• If the next symbol is (then use R→ (RR

9

Ambiguity

Theorem
The problem of deciding whether a given CFG is ambiguous is undecidable

• Bad news:
There is no general algorithm to remove ambiguity from a CFG

• More bad news:
Some CFL’s have only ambiguous CFG’s

• CFL L is inherently ambiguous if all grammars for L are ambiguous

• There are heuristics that can be used to remove ambiguity from a
grammar

10

Inherent Ambiguity

• Parikh first proved the existence of context-free, inherently
ambiguous languages (1961)

• He proved the inherent ambiguity of

M = {aibjaibk | i, j, k ≥ 1} ∪ {aibjakbj | i, j, k ≥ 1}

11

Inherent Ambiguity: Example

• L = {0i1j2k | i = j or j = k}
• Intuitively strings of the form 0n1n2n can be generated by two

different parse trees:

- one checks that the number of 0’s and 1’s are equal,

- the other one checks that the number of 1’s and 2’s are equal

12

Inherent Ambiguity: Example

One Possible Ambiguous Grammar for L = {0i1j2k | i = j or j = k}

S → AB | CD
A→ 0A1 | 01
B → 2B | 2
C → 0C | 0
D → 1D2 | 12

• A generates equal numbers 0’s and 1’s

• B generates any number of 2’s

• C generates any number of 0’s.

• D generates equal numbers 1’s and 2’s

13

Inherent Ambiguity: Example

One Possible Ambiguous Grammar for L = {0i1j2k | i = j or j = k}

S → AB | CD
A→ 0A1 | 01
B → 2B | 2
C → 0C | 0
D → 1D2 | 12

• There are two derivations of every string with equal numbers of 0’s,
1’s and 2’s

S ⇒ AB ⇒ 01B ⇒ 012

S ⇒ CD ⇒ 0D ⇒ 012

13

Ambiguity Exercise

Question
Show that the following grammar is ambiguous:

A→ BC

B → 1B1 | 1
C → 1C1 | ε

Answer
Two different leftmost derivations for 111

• A⇒ BC ⇒ 1C ⇒ 11C1⇒ 111

• A⇒ BC ⇒ 1B1C ⇒ 111C ⇒ 111

14

Ambiguity Exercise

Question
Show that the following grammar is ambiguous:

A→ BC

B → 1B1 | 1
C → 1C1 | ε

Answer
Two different leftmost derivations for 111

• A⇒ BC ⇒ 1C ⇒ 11C1⇒ 111

• A⇒ BC ⇒ 1B1C ⇒ 111C ⇒ 111

14

Chomsky Normal Form

• Consider the grammar Gε = (∅, {S}, S,R) with the following
production rules

S → SSSSS | ε
• Grammar is obviously ambiguous

• It has infinitely many parse trees which can be arbitrarily large!

15

Chomsky Normal Form

• Bad news: we cannot eliminate ambiguity from CFGs in general

• Good news: we can at least eliminate the possibility to have
infinitely many parse trees for a given string

• There is an equivalent grammar in Chomsky Normal Form (CNF) for
any context-free grammar

• Grammar in CNF guarantees
- every string has a finite number of parse trees
- every parse tree for a given string has the same size (binary tree)

16

Chomsky Normal Form (CNF)

A CFG is in Chomsky Normal Form if each rule is of the form

A→ BC

A→ a

where

• a is any terminal

• A,B,C are non-terminals

• B, C cannot be start variable

We allow the rule S → ε if ε ∈ L

17

Example

• For the balanced parentheses language,

S → SS | (S) | ()

• Equivalent Chomsky Normal Form (CNF) grammar
(S0 is start symbol):

S0 → SS | LA | LR
S → SS | LA | LR
A→ SR

L→ (

R→)

• Any context-free grammar can be converted through an algorithm
into one in Chomsky Normal Form

- We will discuss this in more detail later in the course
18

