
Handout 3 (Finite Automata)
Every formal language and compiler course I know of bombards you first with
automata and then to a much, much smaller extend with regular expressions.
As you can see, this course is turned upside down: regular expressions come
first. The reason is that regular expressions are easier to reason about and the
notion of derivatives, although already quite old, only became more widely
known rather recently. Still, let us in this lecture have a closer look at automata
and their relation to regular expressions. This will help us with understanding
why the regular expressionmatchers in Python, Ruby and Java are so slowwith
certain regular expressions. On thewaywewill also seewhat are the limitations
of regular expressions. Unfortunately, they cannot be used for everything.

Deterministic Finite Automata
Lets start…the central definition is:

A deterministic finite automaton (DFA), say A, is given by a five-tuple wriĴen
A(Σ, Qs, Q0, F, δ) where

• Σ is an alphabet,

• Qs is a finite set of states,

• Q0 ∈ Qs is the start state,

• F ⊆ Qs are the accepting states, and

• δ is the transition function.

I am sure you have seen this defininition already before. The transition function
determines how to “transition” from one state to the next state with respect to a
character. We have the assumption that these transition functions do not need
to be defined everywhere: so it can be the case that given a character there is
no next state, in which case we need to raise a kind of “failure exception”. That
means actually we have partial functions as transitions—see the Scala imple-
mentation of DFAs later on. A typical example of a DFA is

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017

1

In this graphical notation, the accepting state Q4 is indicated with double cir-
cles. Note that there can be more than one accepting state. It is also possible
that a DFA has no accepting state at all, or that the starting state is also an ac-
cepting state. In the case above the transition function is defined everywhere
and can also be given as a table as follows:

(Q0, a) → Q1
(Q0, b) → Q2
(Q1, a) → Q4
(Q1, b) → Q2
(Q2, a) → Q3
(Q2, b) → Q2
(Q3, a) → Q4
(Q3, b) → Q0
(Q4, a) → Q4
(Q4, b) → Q4

Weneed to define the notion of what language is accepted by an automaton.
For this we lift the transition function δ from characters to strings as follows:

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

This lifted transition function is often called delta-hat. Given a string, we start
in the starting state and take the first character of the string, follow to the next
state, then take the second character and so on. Once the string is exhausted
andwe end up in an accepting state, then this string is accepted by the automa-
ton. Otherwise it is not accepted. This also means that if along the way we
hit the case where the transition function δ is not defined, we need to raise an
error. In our implementation we will deal with this case elegantly by using
Scala’s Try. Summing up: a string s is in the language accepted by the automaton
A(Σ, Q, Q0, F, δ) iff

δ̂(Q0, s) ∈ F

I let you think about a definition that describes the set of all strings accepted by
a determinsitic finite automaton.

My take on an implementation of DFAs in Scala is given in Figure 1. As
you can see, there are many features of the mathematical definition that are
quite closely reflected in the code. In the DFA-class, there is a starting state,
called start, with the polymorphic type A. There is a partial function delta for
specifying the transitions—these partial functions take a state (of polymorphic
type A) and an input (of polymorphic type C) and produce a new state (of type
A). For the moment it is OK to assume that A is some arbitrary type for states
and the input is just characters. (The reason for not having concrete types, but
polymorphic types for the states and the input of DFAswill become clearer later
on.)

2

1 // DFAs in Scala using partial functions
2 import scala.util.Try
3

4 // type abbreviation for partial functions
5 type :=>[A, B] = PartialFunction[A, B]
6

7 case class DFA[A, C](start: A, // starting state
8 delta: (A, C) :=> A, // transition (partial fun)
9 fins: A => Boolean) { // final states
10

11 def deltas(q: A, s: List[C]) : A = s match {
12 case Nil => q
13 case c::cs => deltas(delta(q, c), cs)
14 }
15

16 def accepts(s: List[C]) : Boolean =
17 Try(fins(deltas(start, s))) getOrElse false
18 }
19

20 // the example shown earlier in the handout
21 abstract class State
22 case object Q0 extends State
23 case object Q1 extends State
24 case object Q2 extends State
25 case object Q3 extends State
26 case object Q4 extends State
27

28 val delta : (State, Char) :=> State =
29 { case (Q0, 'a') => Q1
30 case (Q0, 'b') => Q2
31 case (Q1, 'a') => Q4
32 case (Q1, 'b') => Q2
33 case (Q2, 'a') => Q3
34 case (Q2, 'b') => Q2
35 case (Q3, 'a') => Q4
36 case (Q3, 'b') => Q0
37 case (Q4, 'a') => Q4
38 case (Q4, 'b') => Q4 }
39

40 val dfa = DFA(Q0, delta, Set[State](Q4))
41

42 dfa.accepts("bbabaab".toList) // true
43 dfa.accepts("baba".toList) // false

Figure 1: A Scala implementation of DFAs using partial functions. Note some
subtleties: deltas implements the delta-hat construction by lifting the (partial)
transition function to lists of characters. Since delta is given as a partial func-
tion, it can obviously go “wrong” in which case the Try in accepts catches the
error and returns false—that means the string is not accepted. The example
delta in Line 28–38 implements the DFA example shown earlier in the hand-
out. 3

TheDFA-class has also an argument for specifying final states. In the imple-
mentation it is not a set of states, as in the mathematical definition, but a func-
tion from states to booleans (this function is supposed to return true whenever
a state is final; false otherwise). While this boolean function is different from
the sets of states, Scala allows to use sets for such functions (see Line 40 where
the DFA is initialised). Again it will become clear later on why I use functions
for final states, rather than sets.

The most important point in the implementation is that I use Scala’s partial
functions for representing the transitions; alternatives would have been Maps
or even Lists. One of the main advantages of using partial functions is that
transitions can be quite nicely defined by a series of case statements (see Lines
28 – 38 for an example). If you need to represent an automaton with a sink state
(catch-all-state), you can use Scala’s paĴern matching and write something like

abstract class State
...
case object Sink extends State

val delta : (State, Char) :=> State =
{ case (S0, 'a') => S1

case (S1, 'a') => S2
case _ => Sink

}

I let you think what the corresponding DFA looks like in the graph notation.
Finally, I let you ponder whether this is a good implementation of DFAs or

not. In doing so I hope you notice that the Σ and Qs components (the alphabet
and the set of finite states, respectively) are missing from the class definition.
This means that the implementation allows you to do some fishy things you are
not meant to do with DFAs. Which fishy things could that be?

Non-Deterministic Finite Automata
Rememberwewant to find outwhat the relation is between regular expressions
and automata. To do this with DFAs is a bit unwieldy. While with DFAs it is
always clear that given a state and a character what the next state is (potentially
none), it will be convenient to relax this restriction. That means we allow states
to have several potential successor states. We even allowmore than one starting
state. The resulting construction is called a Non-Deterministic Finite Automaton
(NFA) given also as a five-tuple A(Σ, Qs, Q0s, F, ρ) where

• Σ is an alphabet,

• Qs is a finite set of states

• Q0s is a set of start states (Q0s ⊆ Qs)

• F are some accepting states with F ⊆ Qs, and

4

• ρ is a transition relation.

A typical example of a NFA is

Q0start Q1 Q2

b

b

a

a

a, b

a

This NFA happens to have only one starting state, but in general there could
be more. Notice that in state Q0 we might go to state Q1 or to state Q2 when
receiving an a. Similarly in state Q1 and receiving an a, we can stay in state Q1
or go to Q2. This kind of choice is not allowedwith DFAs. The downside of this
choice in NFAs is that when it comes to deciding whether a string is accepted
by a NFA we potentially have to explore all possibilities. I let you think which
strings the above NFA accepts.

There are a number of additional points you should note aboutNFAs. Every
DFA is a NFA, but not vice versa. The ρ in NFAs is a transition relation (DFAs
have a transition function). The difference between a function and a relation
is that a function has always a single output, while a relation gives, roughly
speaking, several outputs. Look again at the NFA above: if you are currently in
the state Q1 and you read a character b, then you can transition to either Q0 or
Q2. Which route, or output, you take is not determined. This non-determinism
can be represented by a relation.

My implementation of NFAs in Scala is shown in Figure 2. Perhaps interest-
ingly, I do not actually use relations for my NFAs, but use transition functions
that return sets of states. DFAs have partial transition functions that return a
single state; my NFAs return a set of states. I let you think about this represen-
tation for NFA-transitions and how it corresponds to the relations used in the
mathematical definition of NFAs. An example of a transition function in Scala
for the NFA shown above is

val nfa_delta : (State, Char) :=> Set[State] =
{ case (Q0, 'a') => Set(Q1, Q2)

case (Q0, 'b') => Set(Q0)
case (Q1, 'a') => Set(Q1, Q2)
case (Q1, 'b') => Set(Q0, Q1) }

Like in the mathematical definition, starts is in NFAs a set of states; fins is
again a function from states to booleans. The next function calculates the set
of next states reachable from a single state q by a character c. In case there is
no such state—the partial transition function is undefined—the empty set is
returned (see function applyOrElse in Lines 9 and 10). The function nexts just
lifts this function to sets of states.

Look very careful at the accepts and deltas functions inNFAs and remem-
ber that when accepting a string by aNFAwemight have to explore all possible

5

1 // NFAs in Scala using partial functions (returning
2 // sets of states)
3 import scala.util.Try
4

5 // type abbreviation for partial functions
6 type :=>[A, B] = PartialFunction[A, B]
7

8 // return an empty set when not defined
9 def applyOrElse[A, B](f: A :=> Set[B], x: A) : Set[B] =
10 Try(f(x)) getOrElse Set[B]()
11

12

13 // NFAs
14 case class NFA[A, C](starts: Set[A], // starting states
15 delta: (A, C) :=> Set[A], // transition function
16 fins: A => Boolean) { // final states
17

18 // given a state and a character, what is the set of
19 // next states? if there is none => empty set
20 def next(q: A, c: C) : Set[A] =
21 applyOrElse(delta, (q, c))
22

23 def nexts(qs: Set[A], c: C) : Set[A] =
24 qs.flatMap(next(_, c))
25

26 // given some states and a string, what is the set
27 // of next states?
28 def deltas(qs: Set[A], s: List[C]) : Set[A] = s match {
29 case Nil => qs
30 case c::cs => deltas(nexts(qs, c), cs)
31 }
32

33 // is a string accepted by an NFA?
34 def accepts(s: List[C]) : Boolean =
35 deltas(starts, s).exists(fins)
36 }

Figure 2: A Scala implementation of NFAs using partial functions. Notice that
the function accepts implements the acceptance of a string in a breath-first
search fashion. This can be a costlyway of decidingwhether a string is accepted
or not in applications that need to handle large NFAs and large inputs.

6

transitions (recall which state to go to is not unique anymore with NFAs…we
need to explore potentially all next states). The implementation achieves this
exploration through a breadth-first search. This is fine for small NFAs, but can
lead to real memory problems when the NFAs are bigger and larger strings
need to be processed. As result, some regular expression matching engines
resort to a depth-first search with backtracking in unsuccessful cases. In our im-
plementation we can implement a depth-first version of accepts using Scala’s
exists-function as follows:

def search(q: A, s: List[C]) : Boolean = s match {
case Nil => fins(q)
case c::cs => next(q, c).exists(search(_, cs))

}

def accepts2(s: List[C]) : Boolean =
starts.exists(search(_, s))

This depth-first way of exploration seems to work quite efficiently in many ex-
amples and is much less of a strain on memory. The problem is that the back-
tracking can get “catastrophic” in some examples—remember the catastrophic
backtracking from earlier lectures. This depth-first search with backtracking is
the reason for the abysmal performance of some regular expression matchings
in Java, Ruby and Python. I like to show you this in the next two sections.

Epsilon NFAs

In order to get an idea what calculations are performed by Java & friends, we
need a method for transforming a regular expression into an automaton. This
automaton should accept exactly those strings that are accepted by the regular
expression. The simplest andmostwell-knownmethod for this is calledThomp-
son Construction, after the Turing Award winner Ken Thompson. This method
is by recursion over regular expressions and depends on the non-determinism
in NFAs described in the previous section. You will see shortly why this con-
struction works well with NFAs, but is not so straightforward with DFAs.

Unfortunately we are still one step away from our intended target though—
because this constructionuses a version ofNFAs that allows “silent transitions”.
The idea behind silent transitions is that they allow us to go from one state to
the next without having to consume a character. We label such silent transition
with the leĴer ϵ and call the automata ϵNFAs. Two typical examples of ϵNFAs
are:

7

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

R1start

R2

R3
b

a

ϵ a

Consider the ϵNFA on the left-hand side: the ϵ-transitions mean you do not
have to “consume” any part of the input string, but “silently” change to a dif-
ferent state. In this example, if you are in the starting state Q0, you can silently
move either to Q1 or Q2. You can see that once you are in Q1, respectively Q2,
you cannot “go back” to the other states. So it seems allowing ϵ-transitions
is a rather substancial extension to NFAs. On first appearances, ϵ-transitions
might even look rather strange, or even silly. To start with, silent transitions
make the decision whether a string is accepted by an automaton even harder:
with ϵNFAs we have to look whether we can do first some ϵ-transitions and
then do a “proper”-transition; and after any “proper”-transition we again have
to check whether we can do again some silent transitions. Even worse, if there
is a silent transition pointing back to the same state, then we have to be care-
ful our decision procedure for strings does not loop (remember the depth-first
search for exploring all states).

The obvious question is: Do we get anything in return for this hassle with
silent transitions? Well, we still have to work for it…unfortunately. If we were
to follow the many textbooks on the subject, we would now start with defining
what ϵNFAs are—that would require extending the transition relation of NFAs.
Next, we woudl show that the ϵNFAs are equivalent to NFAs and so on. Once
we have done all this on paper, we would need to implement ϵNFAs. Lets try
to take a shortcut instead. We are not really interested in ϵNFAs; they are only
a convenient tool for translating regular expressions into automata. So we are
not going to implementing them explicitly, but translate them immediately into
NFAs (in a sense ϵNFAs are just a convenient API for lazy people ;o). Howdoes
the translation work? Well we have to find all transitions of the form

q ϵ−→ . . . ϵ−→ a−→ ϵ−→ . . . ϵ−→ q′

and replace them with q a−→ q′. Doing this to the ϵNFA on the right-hand side
above gives the NFA

8

R1start

R2

R3
b

a

a a

a

a

where the single ϵ-transition is replaced by three additional a-transitions. Please
do the calculations yourself and verify that I did not forget any transition.

So in what follows, whenever we are given an ϵNFA we will replace it by
an equivalent NFA. The Scala code for this translation is given in Figure 3. The
main workhorse in this code is a function that calculates a fixpoint of function
(Lines 5–10). This function is used for “discovering” which states are reachable
by ϵ-transitions. Once no new state is discovered, a fixpoint is reached. This
is used for example when calculating the starting states of an equivalent NFA
(see Line 36): we start with all starting states of the ϵNFA and then look for all
additional states that can be reached by ϵ-transitions. We keep on doing this
until no new state can be reached. This is what the ϵ-closure, named in the code
ecl, calculates. Similarly, an accepting state of the NFA is when we can reach
an accepting state of the ϵNFA by ϵ-transitions.

Also look carefully how the transitions of ϵNFAs are implemented. The
additional possibility of performing silent transitions is encoded by using Op-
tion[C] as the type for the “input”. The Somes stand for “propper” transitions
where a character is consumed; None stands for ϵ-transitions. The transition
functions for the two ϵNFAs from the beginning of this section can be defined
as

val enfa_trans1 : (State, Option[Char]) :=> Set[State] =
{ case (Q0, Some('a')) => Set(Q0)

case (Q0, None) => Set(Q1, Q2)
case (Q1, Some('a')) => Set(Q1)
case (Q2, Some('b')) => Set(Q2) }

val enfa_trans2 : (State, Option[Char]) :=> Set[State] =
{ case (R1, Some('b')) => Set(R3)

case (R1, None) => Set(R2)
case (R2, Some('a')) => Set(R1, R3) }

I hope you agree nowwith my earlier statement that the ϵNFAs are just an API
for NFAs.

Thompson Construction

Having the translation of ϵNFAs to NFAs in place, we can finally return to the
problem of translating regular expressions into equivalent NFAs. Recall that by

9

1 // epsilon NFAs...immediately translated into NFAs
2 // (needs nfa.scala)
3

4 // fixpoint construction
5 import scala.annotation.tailrec
6 @tailrec
7 def fixpT[A](f: A => A, x: A): A = {
8 val fx = f(x)
9 if (fx == x) x else fixpT(f, fx)
10 }
11

12 // translates eNFAs directly into NFAs
13 def eNFA[A, C](starts: Set[A], // starting states
14 delta: (A, Option[C]) :=> Set[A], // epsilon-transitions
15 fins: A => Boolean) : NFA[A, C] = { // final states
16

17 // epsilon transitions
18 def enext(q: A) : Set[A] =
19 applyOrElse(delta, (q, None))
20

21 def enexts(qs: Set[A]) : Set[A] =
22 qs | qs.flatMap(enext(_)) // | is the set-union in Scala
23

24 // epsilon closure
25 def ecl(qs: Set[A]) : Set[A] =
26 fixpT(enexts, qs)
27

28 // "normal" transitions
29 def next(q: A, c: C) : Set[A] =
30 applyOrElse(delta, (q, Some(c)))
31

32 def nexts(qs: Set[A], c: C) : Set[A] =
33 ecl(ecl(qs).flatMap(next(_, c)))
34

35 // result NFA
36 NFA(ecl(starts),
37 { case (q, c) => nexts(Set(q), c) },
38 q => ecl(Set(q)) exists fins)
39 }

Figure 3: A Scala function that translates ϵNFA into NFAs. The transtion func-
tion of ϵNFA takes as input an Option[C]. None stands for an ϵ-transition;
Some(c) for a “proper” transition consuming a character. The functions in Lines
18–26 calculate all states reachable by one or more ϵ-transition for a given set
of states. The NFA is constructed in Lines 36–38.

10

equivalent we mean that the NFAs recognise the same language. Consider the
simple regular expressions 0, 1 and c. They can be translated into equivalent
NFAs as follows:

0 start

1 start

c start c

(1)

I let you thinkwhether the NFAs canmatch exactly those strings the regular ex-
pressions can match. To do this translation in code we need a way to construct
states programatically...and as an additional constrain Scala needs to recog-
nise that these states are being distinct. For this I implemented in Figure 4 a
class TState that includes a counter and a companion object that increases this
counter whenever a new state is created.1

The case for the sequence regular expression r1 · r2 is a bitmore complicated:
Say, we are given by recursion two NFAs representing the regular expressions
r1 and r2 respectively.

r1 r2

start
start

start
. . .

start

start
. . .

The first NFA has some accepting states and the second some starting states.
We obtain an ϵNFA for r1 · r2 by connecting the accepting states of the first NFA
with ϵ-transitions to the starting states of the second automaton. By doing so
we make the accepting states of the first NFA to be non-accepting like so:

r1 · r2

start
start

start
.

ϵ

ϵ

The idea behind this construction is that the start of any string is first recognised
by the first NFA, then we silently change to the second NFA; the ending of the
string is recognised by the second NFA...just like matching of a string by the
regular expression r1 · r2. The Scala code for this constrction is given in Figure 5
in Lines 16–23. The starting states of the ϵNFA are the starting states of the first

1You might have to read up what companion objects do in Scala.

11

1 // Thompson Construction (Part 1)
2 // (needs :load nfa.scala
3 // :load enfa.scala)
4

5

6 // states for Thompson construction
7 case class TState(i: Int) extends State
8

9 object TState {
10 var counter = 0
11

12 def apply() : TState = {
13 counter += 1;
14 new TState(counter - 1)
15 }
16 }
17

18

19 // a type abbreviation
20 type NFAt = NFA[TState, Char]
21

22

23 // a NFA that does not accept any string
24 def NFA_ZERO(): NFAt = {
25 val Q = TState()
26 NFA(Set(Q), { case _ => Set() }, Set())
27 }
28

29 // a NFA that accepts the empty string
30 def NFA_ONE() : NFAt = {
31 val Q = TState()
32 NFA(Set(Q), { case _ => Set() }, Set(Q))
33 }
34

35 // a NFA that accepts the string "c"
36 def NFA_CHAR(c: Char) : NFAt = {
37 val Q1 = TState()
38 val Q2 = TState()
39 NFA(Set(Q1), { case (Q1, d) if (c == d) => Set(Q2) }, Set(Q2))
40 }

Figure 4: The first part of the Thompson Construction. Lines 7–16 implement
a way of how to create new states that are all distinct by virtue of a counter.
This counter is increased in the companion object of TState whenever a new
state is created. The code in Lines 24–40 constructs NFAs for the simple regular
expressions 0, 1 and c. Compare the pictures given in (1).

12

1 // Thompson Construction (Part 2)
2

3 // some more type abbreviations
4 type NFAtrans = (TState, Char) :=> Set[TState]
5 type eNFAtrans = (TState, Option[Char]) :=> Set[TState]
6

7

8 // for composing an eNFA transition with a NFA transition
9 implicit class RichPF(val f: eNFAtrans) extends AnyVal {
10 def +++(g: NFAtrans) : eNFAtrans =
11 { case (q, None) => applyOrElse(f, (q, None))
12 case (q, Some(c)) =>
13 applyOrElse(f, (q, Some(c))) | applyOrElse(g, (q, c)) }
14 }
15

16 // sequence of two NFAs
17 def NFA_SEQ(enfa1: NFAt, enfa2: NFAt) : NFAt = {
18 val new_delta : eNFAtrans =
19 { case (q, None) if enfa1.fins(q) => enfa2.starts }
20

21 eNFA(enfa1.starts, new_delta +++ enfa1.delta +++ enfa2.delta,
22 enfa2.fins)
23 }
24

25 // alternative of two NFAs
26 def NFA_ALT(enfa1: NFAt, enfa2: NFAt) : NFAt = {
27 val new_delta : NFAtrans = {
28 case (q, c) => applyOrElse(enfa1.delta, (q, c)) |
29 applyOrElse(enfa2.delta, (q, c)) }
30 val new_fins = (q: TState) => enfa1.fins(q) || enfa2.fins(q)
31

32 NFA(enfa1.starts | enfa2.starts, new_delta, new_fins)
33 }
34

35 // star of a NFA
36 def NFA_STAR(enfa: NFAt) : NFAt = {
37 val Q = TState()
38 val new_delta : eNFAtrans =
39 { case (Q, None) => enfa.starts
40 case (q, None) if enfa.fins(q) => Set(Q) }
41

42 eNFA(Set(Q), new_delta +++ enfa.delta, Set(Q))
43 }

Figure 5: The second part of the Thompson Construction implementing the
composition of NFAs according to ·, + and _∗. The implicit class about rich
partial functions implements the infix operation +++which combines an ϵNFA
transition with a NFA transition (both given as partial functions).

13

NFA (corresponding to r1); the accepting function is the accepting function of
the second NFA (corresponding to r2). The new transition function is all the
“old” transitions plus the ϵ-transitions connecting the accepting states of the
first NFA to the starting states of the first NFA (Lines 18 and 19). The ϵNFA is
then immedately translated in a NFA.

The case for the choice regular expression r1 + r2 is slightly different: We
are given by recursion two NFAs representing r1 and r2 respectively.

r1

r2

start

start

start

. . .

. . .

EachNFA has some starting states and some accepting states. We obtain a NFA
for the regular expression r1 + r2 by composing the transition functions (this
crucially depends on knowing that the states of each component NFA are dis-
tinct); and also combine the starting states and accepting functions:

r1 + r2

start

start

start

. . .

. . .

The code for this construction is in Figure 5 in Lines 25–33. Finally for the ∗-case
we have a NFA for r

r

start . . .

14

and connect its accepting states to a new starting state via ϵ-transitions. This
new starting state is also an accepting state, because r∗ can recognise the empty
string. This gives the following ϵNFA for r∗ (the corresponding code is in Fig-
ure 5 in Lines 35–43:

r∗

start . . .ϵ

ϵ

ϵ

ϵ

To sum ap, you can see in the sequence and star cases the need of having
silent ϵ-transitions. Similarly the alternative case shows the need of the NFA-
nondeterminsim. It seems awkward to form the ‘alternative’ composition of
two DFAs, because DFA do not allow several starting and successor states. All
these constructions can nowbe put together in the following recursive function:

def thompson (r: Rexp) : NFAt = r match {
case ZERO => NFA_ZERO()
case ONE => NFA_ONE()
case CHAR(c) => NFA_CHAR(c)
case ALT(r1, r2) => NFA_ALT(thompson(r1), thompson(r2))
case SEQ(r1, r2) => NFA_SEQ(thompson(r1), thompson(r2))
case STAR(r1) => NFA_STAR(thompson(r1))

}

It calculates a NFA from a regular expressions. At last we can run a NFA for
the our evil regular expression examples.

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Python
Ruby

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Python
Java

Subset Construction

Remember that we did not bother with defining and implementing ϵNFA; we
immediately translated them into equivalent NFAs. Equivalent in the sense of

15

accepting the same language (though we only claimed this and did not prove
it rigorously). Remember also that NFAs have a non-deterministic transitions,
given as a relation. This non-determinism makes it harder to decide when a
string is accepted or not; such a decision is rather straightforward with DFAs
(remember their transition function).

What is interesting is that for every NFAwe can find a DFA that also recog-
nises the same language. This might sound like a bit paradoxical, but I litke to
show you this next. There are a number of ways of transforming a NFA into an
equivalent DFA, but the most famous is subset construction. Consider again the
NFA below on the left, consisting of nodes labelled, say, with 0, 1 and 2.

0start

1

2

ϵ

ϵ

a

a

b

nodes a b
{} {} {}
{0} {0, 1, 2} {2}
{1} {1} {}
{2}⋆ {} {2}

{0, 1} {0, 1, 2} {2}
{0, 2}⋆ {0, 1, 2} {2}
{1, 2}⋆ {1} {2}

s: {0, 1, 2}⋆ {0, 1, 2} {2}

The nodes of the DFA are given by calculating all subsets of the set of nodes of
the NFA (seen in the nodes column on the right). The table shows the transition
function for the DFA. The first row states that {} is the sink node which has
transitions for a and b to itself. The next three lines are calculated as follows:

• suppose you calculate the entry for the transition for a and the node {0}

• start from the node 0 in the NFA

• do as many ϵ-transition as you can obtaining a set of nodes, in this case
{0, 1, 2}

• filter out all notes that do not allow an a-transition from this set, this ex-
cludes 2 which does not permit a a-transition

• from the remaining set, do as many ϵ-transition as you can, this yields
again {0, 1, 2}

• the resulting set specifies the transition from {0} when given an a

So the transition from the state {0} reading an a goes to the state {0, 1, 2}. Sim-
ilarly for the other entries in the rows for {0}, {1} and {2}. The other rows are
calculated by just taking the union of the single node entries. For example for a

16

and {0, 1}we need to take the union of {0, 1, 2} (for 0) and {1} (for 1). The start-
ing state of the DFA can be calculated from the starting state of the NFA, that
is 0, and then do as many ϵ-transitions as possible. This gives {0, 1, 2} which
is the starting state of the DFA. The terminal states in the DFA are given by all
sets that contain a 2, which is the terminal state of the NFA. This completes the
subset construction. So the corresponding DFA to the NFA from above is

0, 1, 2start 0, 2

0, 1

1, 2

0

1

2

{}

a

b a

b

a

b

a
b

a b a

b

b

a

a, b

There are two points to note: One is that very often the resulting DFA con-
tains a number of “dead” nodes that are never reachable from the starting state.
For example there is noway to reach node {0, 2} from the starting state {0, 1, 2}.
I let you find the other dead states. In effect the DFA in this example is not a
minimal DFA. Such dead nodes can be safely removed without changing the
language that is recognised by the DFA. Another point is that in some cases,
however, the subset construction produces a DFA that does not contain any
dead nodes…that means it calculates a minimal DFA. Which in turn means
that in some cases the number of nodes by going fromNFAs to DFAs exponen-
tially increases, namely by 2n (which is the number of subsets you can form for
n nodes).

Removing all the dead states in the automaton above, gives a much more
legible automaton, namely

0, 1, 2start 2 {}

a

b

b

a

a, b

Now the big question is whether this DFA can recognise the same language as
the NFA we started with. I let you ponder about this question.

17

Brzozowski’s Method

As said before, we can also go into the other direction—from DFAs to regular
expressions. Brzozowski’s method calculates a regular expression using famil-
iar transformations for solving equational systems. Consider the DFA:

Q0start Q1 Q2

a

b

b

a
a

b

for which we can set up the following equational system

Q0 = 1+ Q0 b + Q1 b + Q2 b (2)
Q1 = Q0 a (3)
Q2 = Q1 a + Q2 a (4)

There is an equation for each node in the DFA. Let us have a look how the right-
hand sides of the equations are constructed. First have a look at the second
equation: the left-hand side is Q1 and the right-hand side Q0 a. The right-hand
side is essentially all possible ways how to end up in node Q1. There is only
one incoming edge from Q0 consuming an a. Therefore the right hand side is
this state followed by character—in this case Q0 a. Now lets have a look at the
third equation: there are two incoming edges for Q2. Therefore we have two
terms, namely Q1 a and Q2 a. These terms are separated by +. The first states
that if in state Q1 consuming an a will bring you to Q2, and the second that
being in Q2 and consuming an a will make you stay in Q2. The right-hand side
of the first equation is constructed similarly: there are three incoming edges,
therefore there are three terms. There is one exception in that we also “add” 1
to the first equation, because it corresponds to the starting state in the DFA.

Having constructed the equational system, the question is how to solve it?
Remarkably the rules are very similar to solving usual linear equational sys-
tems. For example the second equation does not contain the variable Q1 on the
right-hand side of the equation. We can therefore eliminate Q1 from the system
by just substituting this equation into the other two. This gives

Q0 = 1+ Q0 b + Q0 a b + Q2 b (5)
Q2 = Q0 a a + Q2 a (6)

where in Equation (4) we have two occurrences of Q0. Like the laws about +
and ·, we can simplify Equation (4) to obtain the following two equations:

Q0 = 1+ Q0 (b + a b) + Q2 b (7)
Q2 = Q0 a a + Q2 a (8)

18

Unfortunately we cannot make anymore progress with substituting equations,
because both (6) and (7) contain the variable on the left-hand side also on the
right-hand side. Here we need to now use a law that is different from the usual
laws about linear equations. It is called Arden’s rule. It states that if an equation
is of the form q = q r + s then it can be transformed to q = s r∗. Since we can
assume + is symmetric, Equation (7) is of that form: s is Q0 a a and r is a. That
means we can transform (7) to obtain the two new equations

Q0 = 1+ Q0 (b + a b) + Q2 b (9)
Q2 = Q0 a a (a∗) (10)

Now again we can substitute the second equation into the first in order to elim-
inate the variable Q2.

Q0 = 1+ Q0 (b + a b) + Q0 a a (a∗) b (11)

Pulling Q0 out as a single factor gives:

Q0 = 1+ Q0 (b + a b + a a (a∗) b) (12)

This equation is again of the form so that we can apply Arden’s rule (r is b +
a b + a a (a∗) b and s is 1). This gives as solution for Q0 the following regular
expression:

Q0 = 1 (b + a b + a a (a∗) b)∗ (13)

Since this is a regular expression, we can simplify away the 1 to obtain the
slightly simpler regular expression

Q0 = (b + a b + a a (a∗) b)∗ (14)

Now we can unwind this process and obtain the solutions for the other equa-
tions. This gives:

Q0 = (b + a b + a a (a∗) b)∗ (15)
Q1 = (b + a b + a a (a∗) b)∗ a (16)
Q2 = (b + a b + a a (a∗) b)∗ a a (a)∗ (17)

Finally, we only need to “add” up the equations which correspond to a ter-
minal state. In our running example, this is just Q2. Consequently, a regular
expression that recognises the same language as the automaton is

19

(b + a b + a a (a∗) b)∗ a a (a)∗

You can somewhat crosscheck your solution by taking a string the regular ex-
pression can match and and see whether it can be matched by the automaton.
One string for example is aaa and voila this string is also matched by the au-
tomaton.

We should prove that Brzozowski’s method really produces an equivalent
regular expression for the automaton. But for the purposes of this module, we
omit this.

Automata Minimization

As seen in the subset construction, the translation of a NFA to a DFA can result
in a rather “inefficient” DFA. Meaning there are states that are not needed. A
DFA can be minimised by the following algorithm:

1. Take all pairs (q, p) with q ̸= p

2. Mark all pairs that accepting and non-accepting states

3. For all unmarked pairs (q, p) and all characters c test whether

(δ(q, c), δ(p, c))

are marked. If there is one, then also mark (q, p).

4. Repeat last step until no change.

5. All unmarked pairs can be merged.

To illustrate this algorithm, consider the following DFA.

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

In Step 1 and 2 we consider essentially a triangle of the form

20

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

where the lower row is filled with stars, because in the corresponding pairs
there is always one state that is accepting (Q4) and a state that is non-accepting
(the other states).

Now in Step 3 we need to fill in more stars according whether one of the
next-state pairs are marked. We have to do this for every unmarked field until
there is no change anymore. This gives the triangle

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆

⋆

which means states Q0 and Q2, as well as Q1 and Q3 can be merged. This gives
the following minimal DFA

Q0,2start Q1,3 Q4

a

b

b

a

a, b

Regular Languages

Given the constructions in the previous sectionswe obtain the following overall
picture:

21

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

Brzozowski’s
method

By going from regular expressions over NFAs to DFAs, we can always ensure
that for every regular expression there exists a NFA and a DFA that can recog-
nise the same language. Althoughwedid not prove this fact. Similarly by going
fromDFAs to regular expressions, we canmake sure for every DFA there exists
a regular expression that can recognise the same language. Again we did not
prove this fact.

The interesting conclusion is that automata and regular expressions can
recognise the same set of languages:

A language is regular iff there exists a regular expression that recog-
nises all its strings.

or equivalently

A language is regular iff there exists an automaton that recognises
all its strings.

So for decidingwhether a string is recognised by a regular expression, we could
use our algorithm based on derivatives or NFAs or DFAs. But let us quickly
look at what the differences mean in computational terms. Translating a reg-
ular expression into a NFA gives us an automaton that has O(n) nodes—that
means the size of the NFA grows linearly with the size of the regular expres-
sion. The problem with NFAs is that the problem of deciding whether a string
is accepted or not is computationally not cheap. RememberwithNFAswe have
potentially many next states even for the same input and also have the silent
ϵ-transitions. If we want to find a path from the starting state of a NFA to an
accepting state, we need to consider all possibilities. In Ruby and Python this
is done by a depth-first search, which in turn means that if a “wrong” choice is
made, the algorithm has to backtrack and thus explore all potential candidates.
This is exactly the reason why Ruby and Python are so slow for evil regular ex-
pressions. An alternative to the potentially slow depth-first search is to explore
the search space in a breadth-first fashion, but this might incur a big memory
penalty.

To avoid the problems with NFAs, we can translate them into DFAs. With
DFAs the problem of deciding whether a string is recognised or not is much
simpler, because in each state it is completely determined what the next state
will be for a given input. So no search is needed. The problem with this is that

22

the translation to DFAs can explode exponentially the number of states. There-
forewhen this route is taken, we definitely need tominimise the resultingDFAs
in order to have an acceptable memory and runtime behaviour. But remember
the subset construction in the worst case explodes the number of states by 2n.
Effectively also the translation to DFAs can incur a big runtime penalty.

But this does not mean that everything is bad with automata. Recall the
problem of finding a regular expressions for the language that is not recog-
nised by a regular expression. In our implementation we added explicitly such
a regular expressions because they are useful for recognising comments. But in
principle we did not need to. The argument for this is as follows: take a regular
expression, translate it into a NFA and then a DFA that both recognise the same
language. Once you have the DFA it is very easy to construct the automaton for
the language not recognised by a DFA. If the DFA is completed (this is impor-
tant!), then you just need to exchange the accepting and non-accepting states.
You can then translate this DFA back into a regular expression and that will be
the regular expression that canmatch all strings the original regular expression
could notmatch.

It is also interesting that not all languages are regular. Themostwell-known
example of a language that is not regular consists of all the strings of the form

an bn

meaning strings that have the same number of as and bs. You can try, but you
cannot find a regular expression for this language and also not an automaton.
One can actually prove that there is no regular expression nor automaton for
this language, but again that would lead us too far afield for what we want to
do in this module.

Further Reading
Compare what a “human expert” would create as an automaton for the regular
expression a(b + c)∗ and what the Thomson algorithm generates.

23

