
Handout 9 (LLVM, SSA and CPS)
Reflecting on our tiny compiler targetting the JVM, code generation was ac‑
tually not so hard, no? One of the main reason for this ease is that the JVM
is a stack‑based virtual machine and it is, for example, not hard to translate
arithmetic expressions into instructions manipulating the stack. The problem
is that “real” CPUs, although supporting stack operations, are not really stack
machines. They are just not optimised for this way of calculating things. The
design of CPUs is more like, here is a piece of memory—compiler, or compiler
writer, do something with it. Otherwise get lost. So in the name of raw speed,
modern compilers go the extra mile and generate code that is much easier and
faster to process by CPUs.

Another reason why it makes sense to go the extra mile is that stack in‑
structions are very difficult to optimise—you cannot just re‑arrange instruc‑
tions without messing about with what is calculated on the stack. Also it is
hard to find out if all the calculations on the stack are actually necessary and
not by chance dead code. The JVM has for all this sophisticated machinery to
make such “high‑level” code still run fast, but let’s say that for the sake of argu‑
ment we want to not rely on it. We want to generate fast code ourselves. This
means we have to work around the intricacies of what instructions CPUs can
actually process. To make this all tractable, we target the LLVM Intermediate
Language. In this way we can take advantage of the tools coming with LLVM
and for example do not have to worry about things like that CPUs have only a
limited amount of registers.

LLVM1 is a beautiful example that projects from Academia can make a dif‑
ference in the world. LLVM was started in 2000 by two researchers at the Uni‑
versity of Illinois at Urbana–Champaign. At the time the behemoth of com‑
pilers was gcc with its myriad of front‑ends for other languages (e.g. gfortran,
Ada, Go, Objective‑C, Pascal etc). The problem was that gcc morphed over
time into a monolithic gigantic piece of m…ehm software, which you could
not mess about in an afternoon. In contrast LLVMwas a modular suite of tools
with which you could play around easily and try out something new. LLVM
became a big player once Apple hired one of the original developers (I cannot
remember the reason why Apple did not want to use gcc, but maybe they were
also just disgusted by big monolithic codebase). Anyway, LLVM is now the
big player and gcc is more or less legacy. This does not mean that program‑
ming languages like C and C++ are dying out any time soon—they are nicely
supported by LLVM.

Targetting the LLVM‑IR also means we can profit from the very modular
structure of the LLVM compiler and let for example the compiler generate code
for X86, or ARM etc. We can be agnostic about where our code actually runs.
However, whatwe have to do is to generate code in Static Single‑Assignment for‑
mat (short SSA), because that is what the LLVM‑IR expects from us and which

© Christian Urban, King’s College London, 2019
1http://llvm.org

1

http://llvm.org


is the intermediate format that LLVM can use to do cool things (like targetting
strange architectures) and allocating memory efficiently.

The idea behind SSA is to use very simple variable assignments where ev‑
ery variable is assigned only once. The assignments also need to be extremely
primitive in the sense that they can be just simple operations like addition, mul‑
tiplication, jumps and so on. A typical program in SSA is

x := 1
y := 2
z := x + y

where every variable is used only once. You cannot for example have

x := 1
y := 2
x := x + y

because in this snippet x is assigned twice. There are sophisticated algorithm
for imperative languages, like C, for efficiently transforming a program into
SSA format, but we do not have to be concerned about those. We want to com‑
pile a functional language and there things get muchmore interesting than just
sophisticated. We will need to have a look at CPS translations, which stands
for Continuation‑Passing‑Style—basically black art. So sit tight.

CPS‑Translations
What is good about our simple fun language is that it basically only contains
expressions (be they arithmetic expressions or boolean expressions). The only
exceptions are function definitions, for which we can easily use the mechanism
of defining functions in LLVM‑IR. For example the simple fun program

def dble(x) = x * x

can be compiled into the following LLVM‑IR function:

define i32 dble(i32 %x) {
%tmp = mul i32 %x, % x
ret i32 %tmp

}

2


