
Handout 2

Having specified what problem our matching algorithm, match, is supposed to
solve, namely for a given regular expression r and string s answer true if and
only if

s ∈ L(r)

Clearly we cannot use the function L directly in order to solve this problem,
because in general the set of strings L returns is infinite (recall what L(a∗) is).
In such cases there is no algorithm then can test exhaustively, whether a string
is member of this set.

The algorithm we define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean). This can be easily
defined recursively as follows:

nullable(∅)
def
= false

nullable(ϵ)
def
= true

nullable(c)
def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗)
def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if ”” ∈ L(r)

On the left-hand side we have a function we can implement; on the right we
have its specification.

The other function is calculating a derivative of a regular expression. This
is a function which will take a regular expression, say r, and a character, say
c, as argument and return a new regular expression. Beware that the intuition
behind this function is not so easy to grasp on first reading. Essentially this
function solves the following problem: if r can match a string of the form c ::s,
what does the regular expression look like that can match just s.

1


