
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Office Hour: Thurdays 15 – 16
Location: N7.07 (North Wing, Bush House)
Slides & Progs: KEATS
Pollev: https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 06, King’s College London – p. 1/21

Parser Combinators

One of the simplest ways to implement a parser, see
https://vimeo.com/142341803 (by Haoyi Li)

• built-in library in Scala
• fastparse (2) library by Haoyi Li; is part of Ammonite
• possible exponential runtime behaviour

CFL 06, King’s College London – p. 2/21

https://vimeo.com/142341803

Parser Combinators

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

atomic parsers
sequencing
alternative
semantic action (map-parser)

CFL 06, King’s College London – p. 3/21

Atomic parsers, for example, number tokens

Num(123) :: rest ⇒ {(Num(123), rest)}

you consume one or more token from the
input (stream)
also works for characters and strings

CFL 06, King’s College London – p. 4/21

Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

CFL 06, King’s College London – p. 5/21

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

CFL 06, King’s College London – p. 6/21

Map-parser (code p.map(f))

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)

CFL 06, King’s College London – p. 7/21

Map-parser (code p.map(f))

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)

CFL 06, King’s College London – p. 7/21

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 06, King’s College London – p. 8/21

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 06, King’s College London – p. 8/21

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 06, King’s College London – p. 8/21

Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)

CFL 06, King’s College London – p. 9/21

Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)

CFL 06, King’s College London – p. 9/21

Scannerless Parsers

input: string
output: set of (output_type, string)

but using lexers is better because whitespaces or
comments can be filtered out; then input is a
sequence of tokens

CFL 06, King’s College London – p. 10/21

Abstract Parser Class

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I) : Set[T] =
for ((head, tail) <‐ parse(ts);

if (tail.isEmpty)) yield head
}

CFL 06, King’s College London – p. 11/21

Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)

CFL 06, King’s College London – p. 12/21

start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {
while 0 < y do {
while 0 < z do { z := z ‐ 1 };
z := start;
y := y ‐ 1

};
y := start;
x := x ‐ 1

}

CFL 06, King’s College London – p. 13/21

While-Language
Stmt ::= skip

| Id := AExp

| if BExp then Block else Block

| while BExp do Block

Stmts ::= Stmt ; Stmts

| Stmt

Block ::= { Stmts }

| Stmt

AExp ::= …

BExp ::= …
CFL 06, King’s College London – p. 14/21

Aexps

eval(n) def
= n

eval(a1 + a2)
def
= eval(a1) + eval(a2)

eval(a1 − a2)
def
= eval(a1)− eval(a2)

eval(a1 ∗ a2)
def
= eval(a1) ∗ eval(a2)

eval(x) def
= ???

CFL 06, King’s College London – p. 15/21

Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)

CFL 06, King’s College London – p. 16/21

An Interpreter (1)

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

CFL 06, King’s College London – p. 17/21

An Interpreter (1)

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y
eval(stmt, env)

CFL 06, King’s College London – p. 17/21

Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }

CFL 06, King’s College London – p. 18/21

Interpreted Code

200 400 600 800 1,000 1,200 1,400

100

200

300

n

se
cs

CFL 06, King’s College London – p. 19/21

In CW3, in the collatz program there is the line
write ”\n” Should this print ”/n” or perform the
new line command /n ? Also should write be
print() or println() ?

CFL 06, King’s College London – p. 20/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

CFL 06, King’s College London – p. 21/21

