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Parser Combinators

One of the simplest ways to implement a parser, see
https://vimeo.com/142341803 (by Haoyi Li)

• built-in library in Scala
• fastparse (2) library by Haoyi Li; is part of Ammonite
• possible exponential runtime behaviour
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Parser Combinators

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

atomic parsers
sequencing
alternative
semantic action (map-parser)
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Atomic parsers, for example, number tokens

Num(123) :: rest ⇒ {(Num(123), rest)}

you consume one or more token from the
input (stream)
also works for characters and strings
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Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)
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Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}
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Map-parser (code p.map(f) )

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)
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Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

( ∼ E ∼ ) ⇒ f ((x, y), z) ⇒ y
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Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)
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Scannerless Parsers

input: string
output: set of (output_type, string)

but using lexers is better because whitespaces or
comments can be filtered out; then input is a
sequence of tokens
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Abstract Parser Class

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I) : Set[T] =
for ((head, tail) <‐ parse(ts);

if (tail.isEmpty)) yield head
}
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Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)
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start := 1000;
x := start;
y := start;
z := start;
while 0 < x do {
while 0 < y do {
while 0 < z do { z := z ‐ 1 };
z := start;
y := y ‐ 1

};
y := start;
x := x ‐ 1

}
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While-Language
Stmt ::= skip

| Id := AExp

| if BExp then Block else Block

| while BExp do Block

Stmts ::= Stmt ; Stmts

| Stmt

Block ::= { Stmts }

| Stmt

AExp ::= …

BExp ::= …
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Aexps

eval(n) def
= n

eval(a1 + a2)
def
= eval(a1) + eval(a2)

eval(a1 − a2)
def
= eval(a1)− eval(a2)

eval(a1 ∗ a2)
def
= eval(a1) ∗ eval(a2)

eval(x) def
= ???
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Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)
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An Interpreter (1)

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)
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Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }
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Interpreted Code
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In CW3, in the collatz program there is the line
write ”\n” Should this print ”/n” or perform the
new line command /n ? Also should write be
print() or println() ?
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