Compilers and
Formal Languages

Email:

Office Hour:
Location:
Slides & Progs:
Pollev:

christian.urban at kcl.ac.uk

Thurdays 15 - 16

N7.07 (North Wing, Bush House)

KEATS
https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages

5 Grammars, Parsing

9 Optimisations
10 LLVM

While Tokens

WHILE_REGS = (("

' : KEYWORD) +

" : ID) +

': OP) +

" ¢ NUM) +

" ¢ SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

' WHITESPACE))*

E:cr-'c- w S 0 H =

The Goal of this Course

Write a compiler

lexer parser code gen

Today a lexer.

The Goal of this Course

Write a compiler

Today a lexer.

lexing = recognising words (Stone of Rosetta)

Regular Expressions

In programming languages they are often used to
recognise:

operands, digits

identifiers

numbers (non-leading zeros)
keywords

comments

http://www.regexper.com

http://www.regexper.com

write "
read n;
minusl
minus?2
while n

}s

write "

Lexing: Test Case

Fib";

0;
1;
> 0 do {
temp := minus2;
minus2 := minusl + minus2;
minusl := temp;
n :=n -1

Result";

write minus2

"if true then then 42 else +"

KEYWORD:

if, then, else,
WHITESPACE:

n ||’ \n,
IDENTIFIER:

LETTER - (LETTER + DIGIT +)*
NUM:

(NONZERODIGIT - DIGIT") + ©
OP:

+, -, *, %, <, <=
COMMENT :

/* « ~(ALL* - (*/) - ALL*) - */

"if true then then 42 else +"

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD (then),
NUM(42),
KEYWORD(else),
OP(+)

There is one small problem with the tokenizer. How
should we tokenize...?

-3
ID:
OP:

mn m_n
NUM:

(NONZERODIGIT - DIGIT*) + "@"
NUMBER::

NUM + ("-" - NUM)

The same problem with

(ab+a) - (¢ + bc)

and the string abc.

The same problem with

(ab+a) - (¢ + bc)

and the string abc.

Or, keywords are if etc and identifiers are letters
followed by “letters + numbers + _"*

if iffoo

POSIX: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

traditional lexers are fast, but hairy

http://www.haskell.org/haskellwiki/Regex_Posix

Sulzmann & Lu Matcher

We want to match the string abc using r+:

dera

r1_)r2

Sulzmann & Lu Matcher

We want to match the string abc using r+:

dera derb
rq ﬁ ry ﬁ rs

Sulzmann & Lu Matcher

We want to match the string abc using r+:

dera derb derc
rq ﬁ 5) ﬁ rs ﬁ V4

Sulzmann & Lu Matcher

We want to match the string abc using r+:

dera derb derc
(] — [) — 13— Nullable?

Sulzmann & Lu Matcher

We want to match the string abc using r+:

dera derb derc
(] — [) — 13— Nullable?

|

V4

Sulzmann & Lu Matcher

We want to match the string abc using r+:

dera derb derc
(] — [) — 13— Nullable?

|

V3_V4

injc

Sulzmann & Lu Matcher

We want to match the string abc using r:

dera derb derc
(] — [) — 13— Nullable?

|

injb injc

Sulzmann & Lu Matcher

We want to match the string abc using r:

dera derb derc
(] — [) — 13— Nullable?

|

V] G V) s |3 iV 4,

inja injb injc

Sulzmann & Lu Matcher

We want to match the string abc using r:

dera derb derc
(] — [) — 13— Nullable?

N

V] G V) s |3 iV 4,

inja injb injc

Regexes and Values

Regular expressions and their corresponding values:

r

| *

v =

Empty

Char(c)
Seq(v1,v,)
Left(v)

Right(v)

Stars |]

Stars [vs, . .. v,]

abstract class Rexp
object ZERO extends Rexp
object ONE extends Rexp

case
case
case
case
case
case

class
class
class
class

CHAR(c: Char) extends Rexp
ALT(rl: Rexp, r2: Rexp) extends Rexp
SEQ(rl: Rexp, r2: Rexp) extends Rexp
STAR(r: Rexp) extends Rexp

abstract class Val
object Empty extends Val

case
case
case
case
case
case

class
class
class
class
class

Chr(c: Char) extends Val

Sequ(vl: Val, v2: Val) extends Val
Left(v: Val) extends Val

Right(v: Val) extends Val
Stars(vs: List[Val]) extends Val

I’zz ?
rs: (0-(b-c))+(1-c)
rg: (0- .

dera derb derc
I WD) > I3 3 r, nullable

T

V1 b V) V3 € V4

inja injb injc

ri: a-(b-c)

ry: 1(bC)

r3: (0-(b-c))+(1-¢)

rgg (0-(b-¢c))+((0-¢c)+1)

dera derb derc
r > I, > I3 3 r, nullable

NG

V] G V) 4 ZR ; V4

inja injb injc

vi: Seq(Char(a),Seq(Char(b), Char(c)))
vo: Seq(Empty, Seq(Char(b), Char(c)))
v3: Right(Seq(Empty, Char(c)))

v4 Right(Right(Empty))

Flatten

Obtaining the string underlying a value:

|[Empty|

|Char(c)|
|Left(v)]
[Right(v)]
|Seq(v4,v2)|
|Stars [v1, ..., vn]|

def

def

def

def
def
def

I
[c]
V]
V]
Vil @ v, |

vi|@...@|v,|

ri: a-(b-c)
ry: 1- (b . C)
r3: (0-(b-c))+(1-¢)
rgg (0-(b-¢c))+((0-¢c)+1)
dera derb derc
r > I, > I3 3 r, nullable
l l l 1mkeps
V] G V) 4 ZR ; V4
inja injb inj c
Vq:

Vo
V3.
V4.

Seq(Char(a), Seq(Char(b), Char(c)))
Seq(Empty, Seq(Char(b), Char(c)))
Right(Seq(Empty, Char(c)))
Right(Right(Empty))

string:

mkeps (1)
mkeps (r1 +r,)

mkeps (ry - ry)
mkeps (r*)

Mkeps

Finding a (posix) value for recognising the empty

Empty

if nullable(ry)

then Left(mkeps(r,))

else Right(mkeps(r,))
Seq(mkeps(ry), mkeps(r,))
Stars [|

Inject

der c
e AL

V = Vier
inj c

Inject
Injecting (“Adding”) a character to a value

def

inj (c) c (Empty) = Charc

inj (ri +ry) c (Left(v)) = Left(injrycv)

inj (r1 +ry) ¢ (Right(v)) = Right(injrycv)

inj (r1-ry) c (Seq(vq,v2)) défSeq(inj ricvq,va)

inj (r1 - r,) ¢ (Left(Seq(vy,v2))) = Seq(injry cvs, v3)

inj (r1 - ry) ¢ (Right(v)) < Seq(mkeps(r,),injr, cv)
inj (r*) c (Seq(v, Starsvs)) = Stars (injrcv :: vs)

inj: 1st arg — a rexp; 2nd arg — a character; 3rd arg — a value
result — a value

inj (c) ¢ (Empty) = Charc

inj (ri +r2) c (Left(v)) = Left(injricv)
inj (r1 + r2) ¢ (Right(v)) = Right(injr, cv)

inj (ry-ry) c(Seq(vq, 1)) dl:efSeq(injh cvq, 1)
inj (r1 - ry) c (Left(Seq(vq,v2))) def Seq(injrycvq,vs)
inj (ry - ra) c (Right(v)) = Seq(mkeps(ry),injrycv)

[derc (r1-r) defif nullable(ry) then (dercry) - ry + dercry else (dercrq) - rp]

inj (r*) ¢ (Seq(v, Starsvs)) = Stars (injrcv :: vs)

Lexing

lexr[] = ifnullable(r) then mkeps(r) else error
def . .
lexra :: s =injralex(der(a,r),s)
lex: returns a value

dera derb derc
r > 2 > 13 > 1 nullable

|11 b

Vq (vy (V3 (Vg

Records

@ newregex: (x :r) new value: Rec(x,v)

(id : I’,‘d)
(key : riey)

Records

new regex: (x : r) new value: Rec(x,v)
nullable(x : r) = nullable(r)

derc(x:r) = dercr

mkeps(x : r) = Rec(x, mkeps(r))

inj (x : r) cv = Rec(x, injrcv)

(id : I’,‘d)
(key : riey)

Records

new regex: (x : r) new value: Rec(x,v)

nullable(x : r) = nullable(r)
derc(x:r) = dercr
mkeps(x : r) = Rec(x, mkeps(r))

inj (x : r) cv = Rec(x, injrcv)

for extracting subpatterns (z : ((x : ab) + (y : ba))

(id : I’,'d)
(key : riey)

@ Aregular expression for email addresses
(name: [a-20-9__.—]")-@-
(domain: [a-z0-9 —] ™) -.-
(top_level: [a-z] 16})

christian.urban@kcl.ac.uk

@ the result environment:
[(name : christian.urban),
(domain : kcl),
(top_level : ac.uk)]

While Tokens

WHILE_REGS = (("

' : KEYWORD) +

" : ID) +

': OP) +

" ¢ NUM) +

" ¢ SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

' WHITESPACE))*

E:cr-'c- w S 0 H =

Simplification
If we simplify after the derivative, then we are
building the value for the simplified regular
expression, but not for the original regular
expression.

dera derb der c
r > 1, > I3 > r4 nullable

e

V1(Vz(V3(_V4

inja injb injc

Simplification
If we simplify after the derivative, then we are
building the value for the simplified regular
expression, but not for the original regular
expression.

dera derb der c
r > 1, > I3 > r4 nullable

e

V1(Vz(V3(_V4

inja injb injc

(0-(b-¢c))+((0-¢c)+1)—1

Normally we would have
(0-(b-¢c))+((0-¢c)+1)

and answer how this regular expression matches the
empty string with the value

Right(Right(Empty))

But now we simplify this to 1 and would produce
Empty (see mkeps).

Rectification

rectification
functions:

A fov-Seq(fi v, f Empty)
Af1f,v. Seq(fr Empty, f,v)
Afifov. Left(fiv)

Afif v. Right(f,v)
Afifov. Left(fiv)

Rectification

0
0
r
r
r
r
r

old simp returns a rexp;

rectification
functions:

AMifov.Seq(frv, f> Empty)
Af1f,v. Seq(fr Empty, f,v)
A fav. Left(fiv)

Afif v. Right(f,v)
Afifov. Left(fiv)

new simp returns a rexp and a rectification function.

Rectification |+

simp(r):
caser =r;+n
let (ris,f15) = simp(ry)
(r25/f25> = Simp(h)
case ry; = 0: return (15, Av. Right(fo5(v)))
case rps = 0: return (rqs, Av. Left(f15(v)))
case ris = ryg: return (ri5, Av. Left(fis(v)))
otherwise: return (rqs + ras, faie (f1s, fos))

falt(fhfZ) dZEf
Av. casev = Left(v'): return Left(f;(V'))

case v = Right(v/): return Right(f,(v'))

def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALT(rl1l, r2) => {
val (rls, f1s) simp(ril)
val (r2s, f2s) = simp(r2)
(rls, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (rls, F_LEFT(f1ls))
case _ =>
if (rls == r2s) (rls, F_LEFT(f1s))
else (ALT (rls, r2s), F_ALT(f1ls, f2s))

}
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Vval => Val) =
(v:val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(fi(v)) }

Rectification -

simp(r):...
caser =ry-r,
let (ris,f15) = simp(ry)
(ras fos) = simp(r,)
case ri; = 0: return (0, forror)
case rps = 0: return (0, forror)
case ri; = 1: return (rys, Av. Seq(fis(Empty), fos(v)))
case rps = 1:return (rqs, Av. Seq(fis(v), fos (Empty))
otherwise: return (s - ras, feeq (fis, f2s))

fealf f2) €
Av. casev = Seq(vq,v,): return Seq(fi(v1),£2(v2))

def simp(r: Rexp): (Rexp, Val => Val) = r match {
case SEQ(rl1, r2) => {

val (rls, f1s) simp(ril)

val (r2s, f2s) = simp(r2)

(rls, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ Emptyl(fls, f2s))
case (_, ONE) => (rls, F_SEQ_Empty2(fls, f2s))
case _ => (SEQ(rls,r2s), F_SEQ(fls, f2s))

ool

def F_SEQ _Emptyl(fl: Vval => Val, f2: Val => Val)
(v:Vval) => Sequ(f1(Empty), f2(v))

def F_SEQ_Empty2(fl: Val => Val, f2: Val => Val)
(v:Vval) => Sequ(fi(v), f2(Empty))

def F_SEQ(fl: Val => Val, f2: Vval =»> Val) =
(v:Val) => v match {

case Sequ(vl, v2) => Sequ(fil(vl), f2(v2)) }

Rectification Example

(b-c)+(0+1)—(b-c)+1

Rectification Example

(boc) +(0+1) = (b-c) +1

Rectification Example

(boc) +(0+1) = (b-c) +1

Av.w
Av.Right(v)

s
fo

Rectification Example

(b-c)+(0+1)—(b-c)+1

Av.v
Av.Right(v)

fs1
fsz

falt(fs11f52) d:ef
Av. casev = Left(v'): return Left(f; (V')
v

case v = Right(v'): return Right(f,, (v'))

Rectification Example

(b-c)+(0+1)—(b-c)+1

Av.y
Av.Right(v)

fs1
fo

Av. casev = Left(v'): return Left(V')
case v = Right(v'): return Right(Right(v"))

Rectification Example

(b-c)+ (04+1) > (b-c) +1

Av.v
Av.Right(v)

fs1
fsz

Av. casev = Left(v'): return Left(V)
case v = Right(v'): return Right(Right(v"))

mkeps simplified case: Right(Empty)
rectified case: Right (Right (Empty))

Lexing with Simplification
lexr[] = ifnullable(r) then mkeps(r) else error

lexrc s = let (¥, frect) = simp(der(c,r))
injrc (frect(lex(r',s)))

dera derb der c
ri q ry q rs ﬁ rg nu”able

|1

V1hV2hV3hV4

inja injb injc

Environments

Obtaining the “recorded”

parts of a value:

= env(v) @env(v,)
= env(vy)@...@env(vy,)

(x :|v|) : env(v)

(
= env(v

(

(

While Tokens

def

WHILE_REGS = (

(
(
(
(
("
(
(
(

£ CT VSO0 H X

: KEYWORD) +

" : ID) +

"1 0OP)+

" ¢ NUM) +

" : SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

"o WHITESPACE))"<

"if true then then 42 else +"

KEYWORD (if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

Lexer: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

Environments

parts of a value:

Obtaining the “recorded”

env(v)

env(v)

env(v) @env(v,)
env(vi) @...@env(v,)

(x :|v|) : env(v)

While Tokens

def

WHILE_REGS = (

(
(
(
(
("
(
(
(

£ CT VSO0 H X

: KEYWORD) +

" : ID) +

"1 0OP)+

" ¢ NUM) +

" : SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

"o WHITESPACE))"<

"if true then then 42 else +"

KEYWORD (if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

CFL 04, King’s College London — p. 44/52

Week 3 Feedback

Submitted answers: 20
Questions: 12

(Programme) Which degree programme are you studying?

I Responses

BSc Computer Science

BSc Computer Science with Management

or Science with Management and a Year Abroad
science with Management and a Year in Industry
BSc Computer Science with a Year Abroad

BSc Computer Science with a Year in Industry
MSci Computer Science

BSc Computer Science (Artificial Intelligence)
BEng Electronic Engineering

MEng Electronic Engineering

Other

Study Abroad

o
~
IS
o
®

(AppropriatePace) ..teaches at a pace that

N Responses

)to0 fast

e _

(@) sightly too slow

(1) too siow

y).makes clear the y relevance of the subject

I Responses

6)strongly agree:

@ agree

(3 neither agree nor disagree

@) disagree

(1) strongly disagree

(ExplainsMaterialClearly) ..explains the material clearly

W Rosponses

(6)strongly agree

@ agree

) neither agree nor disagree

@) disagree

() strongly disagree

(keats) ...provides useful information on KEATS
I Rosponses

©)strongly agree

@) agreo

@) neither agree nor disagree

@) disagree

(1) strongly disagree

\as (have) made the module objectives clear
I Fosponsos

8) strongly agree

@ agree

@) neither agree nor disagree

@) disagree

(1) strongly disagree

(ohours) ...is available to answer questions in office hours:

I Rosponses

2disagree

1/strongly disagree

h the methods clear

5) strongly agree

@ agroe

(3 neither agree nor disagree

@) disagree

(1) strongly disagree:

(forum) ...is available to answer questions on the discussion forum:

I Responses

et e _
s _

agree
Sneither agree nor disagree
2udisagree

strongly disagree.

(Audible) The video lectures and other content on KEATS are helpful

I Responses

(&) strongly agree

@agree

) nolther agroe nor disagree

@) disagree

() strongly disagree

(facilities) The live teaching sessions are helpful

I Responses

(5) strongly agree

@ agree

) neither agree nor disagree

@) disagree

(1) strongly disagree.

e Great lecturer. Looking forward to the next lecture!

e Would it be possible for you to post the answer of the
homework to KEATS after sgts each week? It will be very
helpful for us to prepare for the exam. Thank you.

e Alot of the parts of the LGT are going through what was
covered in the videos. While this is helpful to refresh
students’ minds, | think it would be better if the Pollev
questions were checked more regularly to focus on what
students want support with

= Reluctant, but | am prepared for selected questions to
make the answers public.

= The content viewing numbers are a bit worrying.
Therefore the reflex on my side to lecture the content again.

e Regarding module content, the content is not only interesting but relevant,
up-to-date, and applicable to the real world. The practical, real-world
application of the module is made abundantly clear through the
coursework-focused delivery of the module. The content of the module
progresses fast, but that is due to the nature of the content and the aims of the
module. The learning aims and assessment are clearly explained.

Regarding teaching, Dr. Urban is incredibly helpful both inside (and even
outside) contact hours. | can tell the lecturer is very passionate about teaching
the module. TAs are on hand to help with all aspects of the module, with the
lecturer having taken care to have dedicated TAs for resolving technical issues.
Discussions both on the forum and in lessons are encouraged, and the module
is structured so that high engagement with the content and live lessons will
make it easier for students to do the module (which is, of course, a good thing).

Only 3 weeks in | would very highly recommend the module. It is a difficult
subject, but a pleasure to study at the same time.

Professor Christian is incredibly patient. He always stays longer after live
session lectures to answer additional questions, even though he doesn’t
need to. He made me feel that no questions are stupid. Thanks so much!

| am enjoying your module at the moment, | think you clearly explain
every point and answer all questions during the live tutorial.

It would be helpful to be given the full set of coursework templates on
GitHub so that there is less ambiguity regarding future courseworks.

Maybe some additional exercises in the LGT would be useful

This module handout are the most useful thing | have ever seen in this
uni.

This module is structured very well and is very interesting. Thank you

= In case of CWS3 the starting files are comb1.sc and comb2.sc uploaded
to KEATS.

If you want to master something;teach it.

- Richard Feynman

