

CSCI 742 - Compiler Construction

Lecture 7 Building Efficient Lexers Instructor: Hossein Hojjat

January 31, 2018

Input: Token Spec

• List of regular expressions (RE) in priority order

Output: Lexer

• Reads an input stream and breaks it up into tokens according to REs

Algorithm

- Convert REs into non-deterministic finite automata (NFA)
- Convert NFA to DFA
- Convert DFA into transition table

Lexer Automatic Construction: Example

- RE for tokens:
- NFA:

(a|ab)

• Transition Table:

	а	b	
0	1	Error	
1	Error	2	
2	Error	Error	

Lexer Automatic Construction: Example

	a	b	
s_0	s_1	Error	
s_1	s_3	s_2	
s_2	Error	Error	
s_3	s_4	s_2	
s_4	s_4	Error	

$$\Sigma = \{a, b\}$$

Example:

Input: aab

• $s_0 \longrightarrow s_1 \longrightarrow s_3 \longrightarrow s_2$

Theorem

A language L can be described by regular expression if and only if L is the language accepted by a finite automaton.

Algorithms:

- Regular expression \Rightarrow Automaton
 - important for lexer construction
- Automaton \Rightarrow Regular expression
 - interesting method in formal languages theory

$RE \Rightarrow$ Finite Automaton

• Build the finite automaton inductively, based on the definition of regular expressions

$RE \Rightarrow$ Finite Automaton

Alternation $R_1 \mid R_2$

Concatenation $R_1 \cdot R_2$

Final States no final anymore

$RE \Rightarrow$ Finite Automaton

Alternation $R\ast$

Exercise

Question

• Construct an NFA for the regular expression $(ab) * \mid b*$

Exercise

Question

• Construct an NFA for the regular expression $(ab) * \mid b*$

Answer

DFA Minimization

- Generated DFAs may have a large number of states
- DFA Minimization: Converts a DFA to another DFA that:
 - recognizes the same language
 - has a minimum number of states
- Increases time/space efficiency

Both DFAs accept: $((a \mid b)b * a)*$

- $\bullet\,$ For every regular language L there exists a unique minimal DFA that recognizes L
 - uniqueness up to renaming of states (isomorphism)
- Minimal DFA can be found mechanically

• Remove unreachable states: there is no path from initial state to q_3

• Remove unreachable states: there is no path from initial state to q_3

- Remove unreachable states: there is no path from initial state to q_3
- q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them

- Remove unreachable states: there is no path from initial state to q_3
- q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them

- Remove unreachable states: there is no path from initial state to q_3
- q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them
- If DFA is in q_1 or q_5 :
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states
- q_1 and q_5 are **equivalent** states: we can unify them

- Remove unreachable states: there is no path from initial state to q_3
- q_2 , q_6 are both accepting sinks with self-loop for any character in Σ
- Any string reaches q_2 or q_6 is guaranteed to be accepted later
- q_2 and q_6 are **equivalent** states: we can unify them
- If DFA is in q_1 or q_5 :
 - if next character is a, it forever accepts in both states
 - if next character is b, it forever rejects in both states
- q_1 and q_5 are **equivalent** states: we can unify them

Intuition

- Two states are equivalent if all subsequent behavior from those states is the same
- Equivalent states may be unified without affecting DFA's behavior

Definition

- We say that states p and q are equivalent if for all w: $\hat{\delta}(p,w)$ is an accepting state iff $\hat{\delta}(q,w)$ is an accepting state
- + $\hat{\delta}$ is the transition function extended for words

DFA Minimization: Procedure

- Write down all pairs of state as a table
- Every cell in table denotes if corresponding states are equivalent
- Table is initially unmarked
- We mark pair (p_i, p_j) when we discover p_i and p_j are not equivalent

- 1. Start by marking all cells (q_i, q_j) where one of them is final and other is non-final.
- 2. Look for unmarked pairs (q_i, q_j) such that for some $c \in \Sigma$, the pair $(\delta(q_i, c), \delta(q_j, c))$ is marked. Then mark (q_i, q_j) .
- 3. Repeat step 2 until no such unmarked pairs remain.

First mark accepting/non-accepting pairs

 (q_1, q_3) is unmarked, $q_1 \stackrel{b}{\rightarrow} q_0$, $q_3 \stackrel{b}{\rightarrow} q_1$, and (q_0, q_1) is marked, so mark (q_1, q_3)

$$(q_1, q_3)$$
 is unmarked,
 $q_1 \stackrel{b}{\rightarrow} q_0$,
 $q_3 \stackrel{b}{\rightarrow} q_1$,
and (q_0, q_1) is marked,
so mark (q_1, q_3)

$$(q_2, q_3)$$
 is unmarked,
 $q_2 \xrightarrow{b} q_0$,
 $q_3 \xrightarrow{b} q_1$,
and (q_0, q_1) is marked,
so mark (q_2, q_3)

$$(q_2, q_3)$$
 is unmarked,
 $q_2 \xrightarrow{b} q_0$,
 $q_3 \xrightarrow{b} q_1$,
and (q_0, q_1) is marked,
so mark (q_2, q_3)

	q_0	q_1	q_2	q_3
q_0		\checkmark	\checkmark	\checkmark
q_1				\checkmark
q_2				\checkmark

There is no way to mark the only unmarked pair (q_1, q_2) Obtain minimized DFA by collapsing q_1 , q_2 to a single state

q_0	q_1	q_2	q_3
q_0	\checkmark	\checkmark	\checkmark
q_1			\checkmark
q_2			\checkmark

Illustration of minimization algorithm

15

Convert the following DFA to a DFA with $\boldsymbol{3}$ states

