
Handout 7 (Compilation)
The purpose of a compiler is to transform a program, a human can write, into
code themachine can run as fast as possible. The fastest codewould bemachine
code the CPU can run directly, but it is often enough to improve the speed of a
program by just targeting a virtual machine. This produces not the fastest pos-
sible code, but code that is fast enough and has the advantage that the virtual
machine care of things a compiler would normally need to take care of (like
explicit memory management).

As an example we will implement a compiler for the very simple While-
language. We will be generating code for the Java Virtual Machine. This is a
stack-based virtual machine, a fact which will make it easy to generate code
for arithmetic expressions. For example for generating code for the expression
1 + 2 we need to generate the following three instructions

ldc 1
ldc 2
iadd

The first instruction loads the constant 1 onto the stack, the next one 2, the third
instruction adds both numbers together replacing the top elements of the stack
with the result 3. For simplicity, wewill throughout consider only integer num-
bers and results. Therefore we can use the instructions iadd, isub, imul, idiv
and so on. The i stands for integer instructions in the JVM (alternatives are d
for doubles, l for longs and f for floats).

Recall our grammar for arithmetic expressions (E is the starting symbol):

⟨E⟩ ::= ⟨T⟩ + ⟨E⟩ | ⟨T⟩ − ⟨E⟩ | ⟨T⟩
⟨T⟩ ::= ⟨F⟩ ∗ ⟨T⟩ | ⟨F⟩ \ ⟨T⟩ | ⟨F⟩
⟨F⟩ ::= (⟨E⟩) | ⟨Id⟩ | ⟨Num⟩

where ⟨Id⟩ stands for variables and ⟨Num⟩ for numbers. For the moment let us
omit variables from arithmetic expressions. Our parser will take this grammar
and produce abstract syntax trees. For example for the expression 1+((2 ∗ 3)+
(4 − 3)) it will produce the following tree.

+

+

−

34

∗

32

1

To generate code for this expression, we need to traverse this tree in post-order
fashion and emit code for each node—this traversal in post-order fashion will

1

produce code for a stack-machine (what the JVM is). Doing so for the tree above
generates the instructions

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

If we “run” these instructions, the result 8will be on top of the stack (I leave this
to you to verify; the meaning of each instruction should be clear). The result
being on the top of the stack will be a convention we always observe in our
compiler, that is the results of arithmetic expressions will always be on top of
the stack. Note, that a different bracketing of the expression, for example (1 +
(2 ∗ 3)) + (4− 3), produces a different abstract syntax tree and thus potentially
also a different list of instructions. Generating code in this fashion is rather easy
to implement: it can be done with the following compile-function, which takes
the abstract syntax tree as argument:

compile(n) def
= ldc n

compile(a1 + a2)
def
= compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
= compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
= compile(a1) @ compile(a2) @ imul

compile(a1\a2)
def
= compile(a1) @ compile(a2) @ idiv

However, our arithmetic expressions can also contain variables. We will
represent them as local variables in the JVM. Essentially, local variables are an
array or pointers tomemory cells, containing in our case only integers. Looking
up a variable can be done with the instruction

iload index

which places the content of the local variable index onto the stack. Storing the
top of the stack into a local variable can be done by the instruction

istore index

Note that this also pops off the top of the stack. One problem we have to over-
come, however, is that local variables are addressed, not by identifiers, but by
numbers (starting from 0). Therefore our compiler needs to maintain a kind of
environmentwhere variables are associated to numbers. This association needs
to be unique: if we muddle up the numbers, then we essentially confuse vari-
ables and the consequence will usually be an erroneous result. Our extended
compile-function for arithmetic expressions will therefore take two arguments:

2

the abstract syntax tree and the environment, E, that maps identifiers to index-
numbers.

compile(n, E) def
= ldc n

compile(a1 + a2, E) def
= compile(a1, E) @ compile(a2, E) @ iadd

compile(a1 − a2, E) def
= compile(a1, E) @ compile(a2, E) @ isub

compile(a1 ∗ a2, E) def
= compile(a1, E) @ compile(a2, E) @ imul

compile(a1\a2, E) def
= compile(a1, E) @ compile(a2, E) @ idiv

compile(x, E) def
= iload E(x)

In the last line we generate the code for variables where E(x) stands for looking
up the environment to which index the variable x maps to.

There is a similar compile-function for boolean expressions, but it includes a
“trick” to do with if- and while-statements. To explain the issue let us explain
first the compilation of statements of the While-language. The clause for skip
is trivial, since we do not have to generate any instruction

compile(skip, E) def
= ([], E)

Note that the compile-function for statements returns a pair, a list of instructions
(in this case the empty list) and an environment for variables. The reason for
the environment is that assignments in the While-language might change the
environment—clearly if a variable is used for the first time, we need to allocate
a new index and if it has been used before, we need to be able to retrieve the
associated index. This is reflected in the clause for compiling assignments:

compile(x := a, E) def
= (compile(a, E) @ istore index, E′)

We first generate code for the right-hand side of the assignment and then add
an istore-instruction at the end. By convention the result of the arithmetic
expression a will be on top of the stack. After the istore instruction, the result
will be stored in the index corresponding to the variable x. If the variable x
has been used before in the program, we just need to look up what the index is
and return the environment unchanged (that is in this case E′ = E). However,
if this is the first encounter of the variable x in the program, then we have to
augment the environment and assign xwith the largest index in E plus one (that
is E′ = E(x 7→ largest_index + 1)). That means for the assignment x := x + 1
we generate the following code

iload nx
ldc 1
iadd
istore nx

where nx is the index for the variable x.
More complicated is the code for if-statments, say

3

if b then cs1 else cs2

where b is a boolean expression and the csi are the instructions for each if-
branch. Lets assume we already generated code for b and cs1/2. Then in the
true-case the control-flow of the program needs to be

code of b code of cs1 code of cs2

jump

where we start with running the code for b; since we are in the true case we
continue with running the code for cs1. After this however, we must not run
the code for cs2, but always jump after the last instruction of cs2 (the code for the
else-branch). Note that this jump is unconditional, meaning we always have
to jump to the end of cs2. The corresponding instruction of the JVM is goto. In
case b turns out to be false we need the control-flow

code of b code of cs1 code of cs2

conditional jump

where we now need a conditional jump (if the if-condition is false) from the
end of the code for the boolean to the beginning of the instructions cs2. Once
we are finished with running cs2 we can continue with whatever code comes
after the if-statement.

The goto and conditional jumps need addresses to where the jump should
go. Sincewe are generating assembly code for the JVM,we do not actually have
to give addresses, but need to aĴach labels to our code. These labels specify a
target for a jump. Therefore the labels need to be unique, as otherwise it would
be ambiguous where a jump should go. A labels, say L, is aĴached to code like

L:
instr1
instr2

...

Recall the “trick” with compiling boolean expressions: the compile-function
for boolean expressions takes three arguments: an abstract syntax tree, an en-
vironment for variable indices and also the label, lab, to where an conditional
jump needs to go. The clause for the expression a1 = a2, for example, is as
follows:

compile(a1 = a2, E, lab) def
=

compile(a1, E) @ compile(a2, E) @ if_icmpne lab

4

We are generating code for the subexpressions a1 and a2. This will mean after
running the corresponding code there will be two integers on top of the stack.
If they are equal, we do not have to do anything and just continue with the
next instructions (see control-flow of ifs above). However if they are not equal,
then we need to (conditionally) jump to the label lab. This can be done with the
instruction

if_icmpne lab

Other jump instructions for boolean operators are

= ⇒ if_icmpne
̸= ⇒ if_icmpeq
< ⇒ if_icmpge
≤ ⇒ if_icmpgt

and so on. I leave it to you to extend the compile-function for the other boolean
expressions. Note thatwe need to jumpwhenever the boolean is not true, which
means we have to “negate” the jump—equals becomes not-equal, less becomes
greater-or-equal. If you do not like this design (it can be the source of some
nasty, hard-to-detect errors), you can also change the layout of the code and
first give the code for the else-branch and then for the if-branch.

We are now ready to give the compile function for if-statments–remember
this function returns for staments a pair consisting of the code and an environ-
ment:

compile(if b then cs1 else cs2, E) def
=

lifelse (fresh label)
lifend (fresh label)
(is1, E′) = compile(cs1, E)
(is2, E′′) = compile(cs2, E′)
(compile(b, E, lifelse)
@ is1
@ goto lifend
@ lifelse :
@ is2
@ lifend :, E′′)

5

