Compilers and Formal Languages (2)

Email: christian.urban at kcl.ac.uk Office: N7.07 (North Wing, Bush House) Slides: KEATS (also homework is there)

Lets Implement an Efficient Regular Expression Matcher

In the handouts is a similar graph for $(a^*)^* \cdot b$ and Java 8.

Evil Regular Expressions

- Regular expression Denial of Service (ReDoS)
- Evil regular expressions
	- $a^{2\{n\}} \cdot a^{\{n\}}$
	- (*a ∗*) *∗*
	- $([a z]^+)^*$ $(a + a \cdot a)^*$
	- $(a+a^2)^*$
- sometimes also called catastrophic backtracking
- …I hope you have watched the video by the StackExchange engineer

A **Language** is a set of strings, for example *{*[], *hello*, *foobar*, *a*, *abc}*

concatenation of strings and languages

foo @ *bar* = *foobar* $A \ @ B \ \stackrel{\text{def}}{=} \ \{s_{\text{r}} @ s_{\text{r}} \ \mid \ s_{\text{r}} \in A \land s_{\text{r}} \in B\}$

For example $A = \{f\omega, \bar{b}a\}$, $B = \{a, b\}$

 $A \mathcal{Q} B = \{$ food, *foob*, *bara*, *barb* $\}$

The Power Operation

The *n***th Power** of a language:

 A° $\stackrel{\text{def}}{=}$ $\{[]\}$ $A^{n+1} \stackrel{\text{def}}{=} A \, @A^n$

For example

 $A^4 = A \, @A \, @A \, @A \qquad \qquad (@ \{ [] \})$
 $A^1 = A \qquad \qquad (@ \{ [] \})$ A^{I} = A $A^{\circ} = \{ \| \}$

Homework Question

• Say $A = \{ [a], [b], [c], [d] \}.$

How many strings are in *A*⁴ ?

CFL 02, King's College London – p. 6/47

Homework Question

\bullet Say $A = \{ [a], [b], [c], [d] \}.$

How many strings are in *A*⁴ ?

What if $A = \{ [a], [b], [c], [c] \}$; how many strings are then in *A*⁴ ?

The Star Operation

The **Kleene Star** of a language:

$$
A\star\stackrel{\text{def}}{=}\bigcup_{\circ\leq n}A^n
$$

This expands to

A^o ∪ *A*^I ∪ *A*² ∪ *A*³ ∪ *A*⁴ ∪ . . .

or

{[]*} ∪ A ∪ A* @ *A ∪ A* @ *A* @ *A ∪ A* @ *A* @ *A* @ *A ∪* . . .

CFL 02, King's College London – p. 7/47

The Meaning of a Regular Expression

 $L(\mathbf{o}) \triangleq \{ \}$ $L(\textbf{I}) \stackrel{\text{def}}{=} \{[] \}$ $L(c) \stackrel{\text{def}}{=} {\{[c]\}}$ $L(r_1 + r_2) \stackrel{\text{def}}{=} L(r_1) \cup L(r_2)$ $L(r_1 \cdot r_2) \stackrel{\text{def}}{=} \{ s_1 \t@s_2 \mid s_1 \in L(r_1) \wedge s_2 \in L(r_2) \}$ $L(r^*)$ $\stackrel{\text{def}}{=}$ $(L(r)) \star$ $\stackrel{\text{def}}{=} \bigcup_{o \leq n} L(r)^n$

> *L* is a function from regular expressions to sets of strings (languages): $L: \text{Rexp} \Rightarrow \text{Set}[\text{String}]$

homework (written exam 80%) coursework (20%; first one today) submission Fridays @ 18:00 – accepted until Mondays

Semantic Derivative

The **Semantic Derivative** of a language w.r.t. to a character *c*:

$$
Der cA \stackrel{\text{def}}{=} \{s \mid c::s \in A\}
$$

 $For A = \{foo, bar, frak\}$ then $Der fA = \{oo, rak\}$ $Der bA = \{ar\}$ *Der a A* = {}

Semantic Derivative

The **Semantic Derivative** of a language w.r.t. to a character *c*:

$$
Der cA \stackrel{\text{def}}{=} \{s \mid c::s \in A\}
$$

 $For A = \{foo, bar, frak\}$ then $Der fA = \{oo, rak\}$ $Der bA = \{ar\}$ *Der a A* = {}

We can extend this definition to strings

$$
DerssA = \{s' \mid s\circledast s' \in A\}
$$

CFL 02, King's College London – p. 10/47

The Specification for Matching

…and the point of the this lecture is to decide this problem as fast as possible (unlike Python, Ruby, Java etc)

Regular Expressions

Their inductive definition:

nothing *|* **1** empty string / "" / [] *| c* single character *· r*² sequence *| r*¹ + *r*² alternative / choice star (zero or more)

When Are Two Regular Expressions Equivalent?

$r_1 \equiv r_2 \stackrel{\text{def}}{=} L(r_1) = L(r_2)$

CFL 02, King's College London – p. 13/47

Concrete Equivalences

$$
(a+b)+c \equiv a+(b+c)
$$

\n
$$
a+a \equiv a
$$

\n
$$
a+b \equiv b+a
$$

\n
$$
(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)
$$

\n
$$
c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)
$$

CFL 02, King's College London – p. 14/47

Concrete Equivalences

$$
(a+b)+c \equiv a+(b+c)
$$

\n
$$
a+a \equiv a
$$

\n
$$
a+b \equiv b+a
$$

\n
$$
(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)
$$

\n
$$
c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)
$$

a · a ̸≡ a $a + (b \cdot c) \equiv (a+b) \cdot (a+c)$

CFL 02, King's College London – p. 14/47

Corner Cases

 $a \cdot \mathbf{o} \neq a$ $a + I$ $\neq a$ **1** *≡* **0** *∗* **1** *[∗] ≡* **1 0** *[∗] ̸≡* **0**

Simplification Rules

- $r + 0 \equiv r$ $\mathbf{0} + r \equiv r$
	- $r \cdot \mathbf{I} \equiv r$
	- $\mathbf{r} \cdot r \equiv r$
	- $r \cdot 0 \equiv 0$
	- $\mathbf{0} \cdot r \equiv \mathbf{0}$
	- $r + r \equiv r$

How many basic regular expressions are there to match the string *abcd* ?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include **1** and **0**?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include **1** and **0**?
- How many if they are also not allowed to contain stars?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include **1** and **0**?
- How many if they are also not allowed to contain stars?
- How many if they are also not allowed to contain $+$?

Brzozowski's Algorithm (1)

…whether a regular expression can match the empty string:

nullable(**0**) $nullable($ **1** $)$ *nullable*(*c*) $\mathit{nullable}(r_1 + r_2)$ $\mathit{nullable}(r_{\scriptscriptstyle \rm I} \cdot r_{\scriptscriptstyle \rm 2})$ *nullable*(*r ∗*)

 $\stackrel{\text{def}}{=}$ *false* $\stackrel{\text{def}}{=}$ *true* $\stackrel{\text{def}}{=}$ *false* $\stackrel{\text{def}}{=} \textit{nullable}(r_1) \vee \textit{nullable}(r_2)$ $\stackrel{\text{def}}{=} \textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$ $\stackrel{\text{def}}{=}$ *true*

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der c r gives the answer, Brzozowski 1964

CFL 02, King's College London – p. 19/47

The Derivative of a Rexp

der c(**0**) $\stackrel{\text{def}}{=} \bullet$ $der c(\mathbf{I})$ $\stackrel{\text{def}}{=} \bullet$ *der c*(*d*) $\stackrel{\text{def}}{=}$ if $c = d$ then **1** else **0** $\det c \left(r_1 + r_2 \right) \stackrel{\text{def}}{=} \det c \, r_1 + \det c \, r_2$ $der c (r_1 \cdot r_2) \stackrel{\text{def}}{=}$ if $\textit{nullable}(r_1)$ then $\left($ *der c* $r_1\right) \cdot r_2 +$ *der c* r_2 else $\left($ *der c* $r_1\right) \cdot r_2$ *der c*(*r ∗*) $\stackrel{\text{def}}{=}$ $\left(\text{der } c \, r\right) \cdot \left(r^*\right)$

The Derivative of a Rexp

der c(**0**) $\stackrel{\text{def}}{=} \bullet$ $der c(\mathbf{I})$ $\stackrel{\text{def}}{=} \bullet$ *der c*(*d*) $\stackrel{\text{def}}{=}$ if $c = d$ then **1** else **0** $\det c \left(r_1 + r_2 \right) \stackrel{\text{def}}{=} \det c \, r_1 + \det c \, r_2$ $der c (r_1 \cdot r_2) \stackrel{\text{def}}{=}$ if $\textit{nullable}(r_1)$ then $\left($ *der c* $r_1\right) \cdot r_2 +$ *der c* r_2 else $\left($ *der c* $r_1\right) \cdot r_2$ *der c*(*r ∗*) $\stackrel{\text{def}}{=}$ $\left(\text{der } c \, r\right) \cdot \left(r^*\right)$ *ders* []*r* $\stackrel{\text{def}}{=} r$ $ders(c::s)$ *r* $\stackrel{\text{def}}{=}$ *ders s*(*der c r*)

Given $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ what is

 $der \, ar = ?$ $derb r = ?$ $der c r = ?$

CFL 02, King's College London – p. 21/47

The Brzozowski Algorithm

$\textit{matches} \, \textit{rs} \stackrel{\text{def}}{=} \textit{nullable} \, (\textit{ders} \, \textit{s} \, \textit{r})$

CFL 02, King's College London – p. 22/47

Brzozowski: An Example

Does r_1 match *abc*?

- Step 1: build derivative of *a* and r_1 $(r_2 = der \, ar_1)$
- Step 2: build derivative of *b* and r_2 $(r_3 = \text{der } br_2)$
- Step 3: build derivative of *c* and r_3 $(r_4 = der c r_3)$
- Step 4: the string is exhausted: $(mulable(r₄))$ test whether r_4 can recognise the empty string
-

Output: result of the test *⇒ true* or*false*

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

 \odot *Der a* $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

 \odot *Der a* $(L(r_1))$ \odot *Der b* (*Der a* ($L(r_1)$))

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

- \odot *Der a* $(L(r_1))$
- \odot *Der b* (*Der a* (*L*(r_1)))
- \odot *Der c*(*Der b* (*Der a* (*L*(*r*₁))))
- ⁴ finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.

We represented the "n-times" a^{n} ^{*n*} as a sequence regular expression:

> 1: *a* 2: $\boldsymbol{d} \cdot \boldsymbol{d}$ $3: d \cdot d \cdot d$ … $I3: d \cdot d$ … 20:

This problem is aggravated with *a* ? being represented as $a + I$.

Solving the Problem

What happens if we extend our regular expressions with explicit constructors

What is their meaning? What are the cases for *nullable* and *der*?

Brzozowski: *a* $?$ {*n*} *· a*^{*n*} 200 400 600 8001,000 Ω 5 10 15 20 25 30 *n* time in secs Python Ruby Scala V1 Scala V2

CFL 02, King's College London – p. 28/47

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$
der ar = ((\mathbf{r} \cdot b) + \mathbf{o}) \cdot r
$$

$$
der br = ((\mathbf{o} \cdot b) + \mathbf{r}) \cdot r
$$

$$
der cr = ((\mathbf{o} \cdot b) + \mathbf{o}) \cdot r
$$

What are these regular expressions equivalent to?

Simplification Rules

 $r + 0 \Rightarrow r$ $\mathbf{0} + r \Rightarrow r$ $r \cdot \mathbf{I} \Rightarrow r$ $\mathbf{I} \cdot r \Rightarrow r$ $r \cdot \mathbf{0} \Rightarrow \mathbf{0}$ $\mathbf{0} \cdot r \Rightarrow \mathbf{0}$ $r + r \Rightarrow r$

```
def ders(s: List[Char], r: Rexp) : Rexp = s match {
  case Nil => r
 case c::s => ders(s, simp(der(c, r)))
}
```

```
def simp(r: Rexp) : Rexp = r match {
  case ALT(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, r2s) => r2s
      case (r1s, ZERO) => r1s
      case (r1s, r2s) =>
        if (r1s == r2s) r1s else ALT(r1s, r2s)
    }
  }
  case SEQ(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, _) => ZERO
      case (_, ZERO) => ZERO
      case (ONE, r2s) => r2s
      case (r1s, ONE) => r1s
      case (r1s, r2s) => SEQ(r1s, r2s)
   }
  }
  case r => r
}
```


0 5,000 10,000 *n*

Another Example in Java 8 and Python

 $\text{Regex: } (a^*)^* \cdot b$ Strings of the form *a*. \bigwedge_n

Same Example in Java 9+

Regex:
$$
(a^*)^* \cdot b
$$

Strings of the form a...a

and with Brzozowski

Regex: (*a ∗*) *∗ · b* Strings of the form *a* . . . *a* \sum_{n} *n*

What is good about this Alg.

- extends to most regular expressions, for example *∼ r* (next slide)
- is easy to implement in a functional language (slide after)
- the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is relatively new work)
- we can prove its correctness…

Negation of Regular Expr's

- *∼ r* (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $\mathit{nullable}(\sim r) \stackrel{\text{def}}{=} \mathit{not}(\mathit{nullable}(r))$
- $der c (∼ r) \stackrel{\text{def}}{=} ∼ (der c r)$

Negation of Regular Expr's

- *∼ r* (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $\mathit{nullable}(\sim r) \stackrel{\text{def}}{=} \mathit{not}(\mathit{nullable}(r))$
- $der c (∼ r) \stackrel{\text{def}}{=} ∼ (der c r)$
	- Used often for recognising comments:

$$
\textit{}/\cdot * \cdot \big(\mathop{\sim}\big([\textit{a$-z}]^* \cdot * \cdot \textit{}/\cdot[\textit{a$-z}]^*\big)\big)\cdot * \cdot \textit{/}
$$

Strand 1:

- Submission on Friday 12 October accepted until Monday 15 @ 18:00
- source code needs to be submitted as well
- you can re-use my Scala code from KEATS or use any programming language you like
- https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

Proofs about Rexps

Remember their inductive definition:

$$
r \ ::= \ \mathbf{0} \\ \mathbf{I} \\ c \\ r_1 \cdot r_2 \\ r_1 + r_2 \\ r^* \qquad \qquad
$$

If we want to prove something, say a property $P(r)$, for all regular expressions *r* then ...

Proofs about Rexp (2)

- *P* holds for **0**, **1** and c
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_{\text{\tiny I}}\cdot r_{\text{\tiny 2}}$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r [∗]* under the assumption that *P* already holds for *r*.

Assume $P(r)$ is the property:

nullable(*r*) if and only if $[$ $] \in L(r)$

CFL 02, King's College London – p. 41/47

Proofs about Rexp (4)

$$
rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}
$$

\n
$$
rev(\mathbf{I}) \stackrel{\text{def}}{=} \mathbf{I}
$$

\n
$$
rev(c) \stackrel{\text{def}}{=} c
$$

\n
$$
rev(r_1 + r_2) \stackrel{\text{def}}{=} rev(r_1) + rev(r_2)
$$

\n
$$
rev(r_1 \cdot r_2) \stackrel{\text{def}}{=} rev(r_2) \cdot rev(r_1)
$$

\n
$$
rev(r^*) \stackrel{\text{def}}{=} rev(r)^*
$$

We can prove

$$
L(rev(r))=\{s^{-1}\mid s\in L(r)\}
$$

by induction on *r*.

Correctness Proof for our Matcher

We started from

s ∈ L(*r*) \Leftrightarrow $[] ∈ Derss(L(r))$

CFL 02, King's College London – p. 43/47

Correctness Proof for our Matcher

We started from

s ∈ L(*r*) \Leftrightarrow [$\vert \in DersS(L(r))$] • if we can show *Derss* $(L(r)) = L(dersst)$ we have *⇔* [] *∈ L*(*ders s r*) *⇔ nullable*(*ders s r*) $\stackrel{\text{def}}{=}$ *matchessr*

Let *Der c A* be the set defined as

$$
Der cA \stackrel{\text{def}}{=} \{s \mid c::s \in A\}
$$

We can prove

 $L(dercr) = Der c(L(r))$

by induction on *r*.

CFL 02, King's College London – p. 44/47

Proofs about Strings

If we want to prove something, say a property $P(s)$, for all strings *s* then ...

- *P* holds for the empty string, and
- *P* holds for the string *c*::*s* under the assumption that *P* already holds for *s*

Proofs about Strings (2)

We can then prove

 $Derss(L(r)) = L(derssr)$

We can finally prove

matches s r if and only if $s \in L(r)$

CFL 02, King's College London – p. 46/47

Epilogue

CFL 02, King's College London – p. 47/47

Epilogue

CFL 02, King's College London – p. 47/47