
Handout 1
This module is about text processing, be it for web-crawlers, compilers, dictio-
naries, DNA-data and so on. When looking for a particular string in a large
text we can use the Knuth-Morris-PraĴ algorithm, which is currently the most
efficient general string search algorithm. But often we do not just look for a
particular string, but for string paĴerns. For example in programming code we
need to identify what are the keywords, what are the identifiers etc. A paĴern
for identifiers could be that they start with a leĴer, followed by zero or more
leĴers, numbers and the underscore. Also often we face the problem that we
are given a string (for example some user input) and want to know whether it
matches a particular paĴern. In this way we can exclude user input that would
otherwise have nasty effects on our program (crashing it or going into an infi-
nite loop, if not worse). Regular expressions help with conveniently specifying
such paĴerns. The idea behind regular expressions is that they are a simple
method for describing languages (or sets of strings)…at least languages we are
interested in in computer science. For example there is no convenient regular
expression for describing the English language short of enumerating all En-
glish words. But they seem useful for describing for example email addresses.1
Consider the following regular expression

[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6} (1)

where the first part matches one or more lowercase leĴers (a-z), digits (0-9),
underscores, dots or hyphens. The + ensures the “one or more”. Then comes
the @-sign, followed by the domain namewhichmust be one or more lowercase
leĴers, digits, underscores, dots or hyphens. Note there cannot be an under-
score in the domain name. Finally there must be a dot followed by the toplevel
domain. This toplevel domain must be 2 to 6 lowercase leĴers including the
dot. Example strings which follow this paĴern are:

niceandsimple@example.org
very.common@example.co.uk
a.little.lengthy.but.fine@dept.example.ac.uk
other.email-with-dash@example.edu

But for example the following two do not:

user@localserver
disposable.style.email.with+symbol@example.com

Identifiers, or variables, in program text are often required to satisfy the
constraints that they start with a leĴer and then can be followed by zero or
more leĴers or numbers and also can include underscores, but not as the first
character. Such identifiers can be recognised with the regular expression

[a-zA-Z] [a-zA-Z0-9_]*
1See “8 Regular Expressions You Should Know” http://goo.gl/5LoVX7

1

http://goo.gl/5LoVX7

Possible identifiers that match this regular expression are x, foo, foo_bar_1,
A_very_42_long_object_name, but not _i and also not 4you.

Many programming language offer libraries that can be used to validate
such strings against regular expressions. Also there are some common, and I
am sure very familiar, ways of how to construct regular expressions. For ex-
ample in Scala we have:

re* matches 0 or more occurrences of preceding expression
re+ matches 1 or more occurrences of preceding expression
re? matches 0 or 1 occurrence of preceding expression
re{n} matches exactly n number of occurrences of preceding ex-

pression
re{n,m} matches at least n and atmost m occurences of the preceding

expression
[...] matches any single character inside the brackets
[^...] matches any single character not inside the brackets
..-.. character ranges
\d matches digits; equivalent to [0-9]

With this table you can figure out the purpose of the regular expressions in the
web-crawlers shown Figures 1, 2 and 3. Note, however, the regular expression
for hĴp-addresses in web-pages is meant to be

"https?://[^"]*"

It specifies that web-addresses need to start with a double quote, then comes
http followed by an optional s and so on. Usually wewould have to escape the
double quotes in order tomake sure we interpret the double quote as character,
not as double quote for a string. But Scala’s trick with triple quotes allows us
to omit this kind of escaping. As a result we can just write:

""""https?://[^"]*"""".r

Note also that the convention in Scala is that .r converts a string into a regular
expression. I leave it to you to ponder whether this regular expression really
captures all possible web-addresses.

Why Study Regular Expressions?
Regular expressions were introduced by Kleene in the 1950ies and they have
been object of intense study since then. They are nowadays preĴymuch ubiqui-
tous in computer science. I am sure you have come across them before. Why on
earth then is there any interest in studying them again in depth in this module?
Well, one answer is in the following graph about regular expression matching
in Python and in Ruby.

2

0 5 10 15 20 25 30
0
5
10
15
20
25
30

number of as

tim
e
in

se
cs Python

Ruby

This graph shows that Python needs approximately 29 seconds for finding out
whether a string of 28 as matches the regular expression [a?]{28}[a]{28}.
Ruby is even slightly worse.2 AdmiĴedly, this regular expression is carefully
chosen to exhibit this exponential behaviour, but similar ones occur more often
than one wants in “real life”. They are sometimes called evil regular expressions
because they have the potential to make regular expression matching engines
to topple over, like in Python and Ruby. The problem with evil regular expres-
sions is that they can have some serious consequences, for example, if you use
them in your web-application. The reason is that hackers can look for these in-
stances where the matching engine behaves badly and then mount a nice DoS-
aĴack against your application.

It will be instructive to look behind the “scenes” to find out why Python
and Ruby (and others) behave so badly when matching with evil regular ex-
pressions. But we will also look at a relatively simple algorithm that solves
this problem much beĴer than Python and Ruby do…actually it will be two
versions of the algorithm: the first one will be able to process strings of approx-
imately 1,000 as in 30 seconds, while the second version will even be able to
process up to 12,000 in less than 10(!) seconds, see the graph below:

0 2000 4000 6000 8000 10000 12000
0
5
10
15
20
25
30

number of as

tim
e
in

se
cs

2In this example Ruby uses the slightly different regular expression a?a?a?...a?a?aaa...aa,
where the a? and a each occur n times.

3

Basic Regular Expressions
The regular expressions shown above, for example for Scala, we will call ex-
tended regular expressions. The ones we will mainly study in this module are
basic regular expressions, which by convention we will just call regular expres-
sions, if it is clear what we mean. The aĴraction of (basic) regular expressions is
that many features of the extended ones are just syntactic sugar. (Basic) regular
expressions are defined by the following grammar:

r ::= ∅ null
| ϵ empty string / ”” / []
| c single character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

Because we overload our notation, there are some subtleties you should be
aware of. When regular expressions are referred to then ∅ does not stand for
the empty set: rather it is a particular paĴern that does not match any string.
Similarly, in the context of regular expressions, ϵ does not stand for the empty
string (as in many places in the literature) but for a regular expression that
matches the empty string. The leĴer c stands for any character from the al-
phabet at hand. Again in the context of regular expressions, it is a particular
paĴern that can match the specified character. You should also be careful with
our overloading of the star: assuming you have read the handout about our
basic mathematical notation, you will see that in the context of languages (sets
of strings) the star stands for an operation on languages. Here r∗ stands for a
regular expression, which is different from the operation on sets is defined as

A∗ def
=

∪
0≤n

An

We will use parentheses to disambiguate regular expressions. Parentheses
are not really part of a regular expression, and indeed we do not need them in
our code because there the tree structure of regular expressions is always clear.
But for writing them down in a more mathematical fashion, parentheses will
be helpful. For example we will write (r1 + r2)

∗, which is different from, say
r1 + (r2)

∗. The former means roughly zero or more times r1 or r2, while the
laĴer means r1 or zero or more times r2. This will turn out to be two different
paĴerns, which match in general different strings. We should also write (r1 +
r2)+ r3, which is different from the regular expression r1 +(r2 + r3), but in case
of + and · we actually do not care about the order and just write r1 + r2 + r3,
or r1 · r2 · r3, respectively. The reasons for this will become clear shortly. In
the literature you will often find that the choice r1 + r2 is wriĴen as r1 | r2 or
r1 || r2. Also following the convention in the literature, we will often omit the ·
all together. This is to make some concrete regular expressions more readable.
For example the regular expression for email addresses shown in (1) would
look like

4

[...]+ · @ · [...]+ · . · [...]{2,6}

which is much less readable than (1). Similarly for the regular expression that
matches the string hello we should write

h · e · l · l · o

but often just write hello.
If you prefer to think in terms of the implementation of regular expressions

in Scala, the constructors and classes relate as follows3

∅ 7→ NULL
ϵ 7→ EMPTY
c 7→ CHAR(c)

r1 + r2 7→ ALT(r1, r2)
r1 · r2 7→ SEQ(r1, r2)

r∗ 7→ STAR(r)

Asource of confusionmight arise from the fact thatwe use the term basic reg-
ular expression for the regular expressions used in “theory” and defined above,
and extended regular expression for the ones used in “practice”, for example in
Scala. If runtime is not an issue, then the laĴer can be seen as syntactic sugar of
the former. For example we could replace

r+ 7→ r · r∗

r? 7→ ϵ + r
\d 7→ 0 + 1 + 2 + . . . + 9

[a - z] 7→ a + b + . . . + z

The Meaning of Regular Expressions
So far we have only considered informally what the meaning of a regular ex-
pression is. This is not good enough for specifications of what algorithms are
supposed to do or which problems they are supposed to solve.

To define the meaning of a regular expression we will associate with every
regular expression a language, or set of strings. This language contains all the
strings the regular expression is supposed to match. To understand what is
going on here it is crucial that you have read the handout about basic mathe-
matical notations.

Themeaning of a regular expression can be defined by a recursive function
called L (for language), which is defined as follows

3More about Scala is in the handout about A Crash-Course on Scala.

5

L(∅)
def
= ∅

L(ϵ) def
= {[]}

L(c) def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@ L(r2)

L(r∗) def
= (L(r))∗

As a result we can now precisely state what the meaning, for example, of the
regular expression h · e · l · l · o is, namely

L(h · e · l · l · o) = {”hello”}
This is expected because this regular expression is only supposed to match
the “hello”-string. Similarly if we have the choice-regular-expression a + b, its
meaning is

L(a + b) = {”a”, ”b”}
You can now also see why we do not make a difference between the different
regular expressions (r1 + r2) + r3 and r1 + (r2 + r3)…they are not the same
regular expression, but they have the same meaning. For example

L((r1 + r2) + r3) = L(r1 + r2) ∪ L(r3)

= L(r1) ∪ L(r2) ∪ L(r3)

= L(r1) ∪ L(r2 + r3)

= L(r1 + (r2 + r3))

The point of the definition of L is that we can use it to precisely specifywhen
a string s is matched by a regular expression r, namely if and only if s ∈ L(r).
In fact we will write a program match that takes any string s and any regular
expression r as argument and returns yes, if s ∈ L(r) and no, if s ̸∈ L(r). We
leave this for the next lecture.

There is one more feature of regular expressions that is worth mentioning.
Given some strings, there are in generalmany different regular expressions that
can recognise these strings. This is obvious with the regular expression a + b
which canmatch the strings a and b. But also the regular expression b+ awould
match the same strings. However, sometimes it is not so obvious whether two
regular expressions match the same strings: for example do r∗ and ϵ + r · r∗

match the same strings? What about ∅∗ and ϵ∗? This suggests the following
relation between equivalent regular expressions:

r1 ≡ r2
def
= L(r1) = L(r2)

That means two regular expressions are said to be equivalent if they match the
same set of strings. Thereforewedo not really distinguish between the different

6

regular expression (r1 + r2)+ r3 and r1 +(r2 + r3), because they are equivalent.
I leave you to the question whether

∅∗ ≡ ϵ∗

holds. Such equivalences will be important for our matching algorithm, be-
cause we can use them to simplify regular expressions.

My Fascination for Regular Expressions
Upuntil a few years ago Iwas not really interested in regular expressions. They
have been studied for the last 60 years (by smarter people than me)—surely
nothing new can be found out about them. I even have the vague recollection
that I did not quite understand themduringmy study. If I remember correctly,4
I got uĴerly confused about ϵ and the empty string.5 Since my study, I have
used regular expressions for implementing lexers and parsers as I have always
been interested in all kinds of programming languages and compilers, which
invariably need regular expression in some form or shape.

Tounderstandmy fascination nowadayswith regular expressions, youneed
to know that my main scientific interest for the last 14 years has been with the-
orem provers. I am a core developer of one of them.6 Theorem provers are sys-
tems in which you can formally reason about mathematical concepts, but also
about programs. In this way they can help with writing bug-free code. The-
orem provers have proved already their value in a number of systems (even
in terms of hard cash), but they are still clunky and difficult to use by average
programmers.

Anyway, in about 2011 I came across the notion of derivatives of regular
expressions. This notion allows one to do almost all calculations in regular
language theory on the level of regular expressions, not needing any automata.
This is important because automata are graphs and it is rather difficult to reason
about graphs in theorem provers. In contrast, to reason about regular expres-
sions is easy-peasy in theorem provers. Is this important? I think yes, because
according to Kuklewicz nearly all POSIX-based regular expression matchers
are buggy.7 With my PhD student Fahad Ausaf I am currently working on
proving the correctness for one such matcher that was proposed by Sulzmann
and Lu in 2014.8 This would be an aĴractive results since we will be able to
prove that the algorithm is really correct, but also that the machine code(!) that
implements this code efficiently is correct. Writing programs in this way does
not leave any room for potential errors or bugs. How nice!

What also helped with my fascination with regular expressions is that we
could indeed find out new things about them that have surprised some experts

4That was really a long time ago.
5Obviously the lecturer must have been bad.
6http://isabelle.in.tum.de
7http://www.haskell.org/haskellwiki/Regex_Posix
8http://goo.gl/bz0eHp

7

http://isabelle.in.tum.de
http://www.haskell.org/haskellwiki/Regex_Posix
http://goo.gl/bz0eHp

in the field of regular expressions. Together with two colleagues from China,
I was able to prove the Myhill-Nerode theorem by only using regular expres-
sions and the notion of derivatives. Earlier versions of this theoremused always
automata in the proof. Using this theoremwe can show that regular languages
are closed under complementation, something which Gasarch in his blog9 as-
sumed can only be shown via automata. Even sombody who has wriĴen a
700+-page book10 on regular exprssions did not know beĴer. Well, we showed
it can also be done with regular expressions only.11 What a feeling if you are
an outsider to the subject!

To conclude: Despite my early ignorance about regular expressions, I find
them now quite interesting. They have a beautiful mathematical theory behind
them. They have practical importance (remember the shocking runtime of the
regular expression matchers in Python and Ruby in some instances). People
who are not very familiar with the mathematical background of regular ex-
pressions get them consistently wrong. The hope is that we can do beĴer in the
future—for example by proving that the algorithms actually satisfy their spec-
ification and that the corresponding implementations do not contain any bugs.
We are close, but not yet quite there.

Despite my fascination, I am also happy to admit that regular expressions
have their shortcomings. There are some well-known “theoretical” shortcom-
ings, for example recognising strings of the form anbn. I am not so bothered by
them. What I am bothered about is when regular expressions are in the way of
practical programming. For example, it turns out that the regular expression
for email addresses shown in (1) is hopelessly inadequate for recognising all of
them (despite being touted as something every computer scientist should know
about). The W3 Consortium (which standardises the Web) proposes to use the
following, already more complicated regular expressions for email addresses:

[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*

But they admit that by using this regular expression they wilfully violate the
RFC 5322 standard which specifies the syntax of email addresses. With their
proposed regular expression they are too strict in some cases and too lax in
others. Not a good situation to be in. A regular expression that is claimed to be
closer to the standard is shown in Figure 4. Whether this claim is true or not,
I would not know—the only thing I can say to this regular expression is it is
a monstrosity. However, this might actually be an argument against the RFC
standard, rather than against regular expressions. Still it is good to know that
some tasks in text processing just cannot be achieved by using regular expres-
sions.

9http://goo.gl/2R11Fw
10http://goo.gl/fD0eHx
11http://www.inf.kcl.ac.uk/staff/urbanc/Publications/rexp.pdf

8

http://goo.gl/2R11Fw
http://goo.gl/fD0eHx
http://www.inf.kcl.ac.uk/staff/urbanc/Publications/rexp.pdf

1 // A crawler which checks whether there are
2 // dead links in web-pages
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 // gets the first 10K of a web-page
9 def get_page(url: String) : String = {
10 Try(Source.fromURL(url).take(10000).mkString) getOrElse
11 { println(s" Problem with: $url"); ""}
12 }
13

14 // regex for URLs
15 val http_pattern = """"https?://[^"]*"""".r
16

17 // drops the first and last character from a string
18 def unquote(s: String) = s.drop(1).dropRight(1)
19

20 def get_all_URLs(page: String) : Set[String] = {
21 http_pattern.findAllIn(page).map(unquote).toSet
22 }
23

24 // naive version of crawl - searches until a given depth,
25 // visits pages potentially more than once
26 def crawl(url: String, n: Int) : Unit = {
27 if (n == 0) ()
28 else {
29 println(s"Visiting: $n $url")
30 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
31 }
32 }
33

34 // some starting URLs for the crawler
35 val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
36 //val startURL = """http://www.inf.kcl.ac.uk/staff/mcburney"""
37

38 crawl(startURL, 2)

Figure 1: The Scala code for a simple web-crawler that checks for broken links
in aweb-page. It uses the regular expression http_pattern in Line 15 for recog-
nising URL-addresses. It finds all links using the library function findAllIn in
Line 21.

9

1 // This version of the crawler only
2 // checks links in the "domain" urbanc
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 // gets the first 10K of a web-page
9 def get_page(url: String) : String = {
10 Try(Source.fromURL(url).take(10000).mkString) getOrElse
11 { println(s" Problem with: $url"); ""}
12 }
13

14 // regexes for URLs and "my" domain
15 val http_pattern = """"https?://[^"]*"""".r
16 val my_urls = """urbanc""".r
17

18 def unquote(s: String) = s.drop(1).dropRight(1)
19

20 def get_all_URLs(page: String) : Set[String] = {
21 http_pattern.findAllIn(page).map(unquote).toSet
22 }
23

24 def crawl(url: String, n: Int) : Unit = {
25 if (n == 0) ()
26 else if (my_urls.findFirstIn(url) == None) {
27 println(s"Visiting: $n $url")
28 get_page(url); ()
29 }
30 else {
31 println(s"Visiting: $n $url")
32 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
33 }
34 }
35

36 // starting URL for the crawler
37 val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
38

39 // can now deal with depth 3 and beyond
40 crawl(startURL, 3)

Figure 2: A version of the web-crawler that only follows links in “my”
domain—since these are the ones I am interested in to fix. It uses the regu-
lar expression my_urls in Line 16 to check for my name in the links. The main
change is in Lines 26–29 where there is a test whether URL is in “my” domain
or not.

10

1 // This version of the crawler that also
2 // "harvests" email addresses from webpages
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 def get_page(url: String) : String = {
9 Try(Source.fromURL(url).take(10000).mkString) getOrElse
10 { println(s" Problem with: $url"); ""}
11 }
12

13 // regexes for URLs, for "my" domain and for email addresses
14 val http_pattern = """"https?://[^"]*"""".r
15 val my_urls = """urbanc""".r
16 val email_pattern = """([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})""".r
17

18 def unquote(s: String) = s.drop(1).dropRight(1)
19

20 def get_all_URLs(page: String) : Set[String] = {
21 http_pattern.findAllIn(page).map(unquote).toSet
22 }
23

24 def print_str(s: String) =
25 if (s == "") () else println(s)
26

27 def crawl(url: String, n: Int) : Unit = {
28 if (n == 0) ()
29 else {
30 println(s"Visiting: $n $url")
31 val page = get_page(url)
32 print_str(email_pattern.findAllIn(page).mkString("\n"))
33 for (u <- get_all_URLs(page).par) crawl(u, n - 1)
34 }
35 }
36

37 // staring URL for the crawler
38 val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
39

40 crawl(startURL, 3)

Figure 3: A small email harvester—whenever we download a web-page, we
also check whether it contains any email addresses. For this we use the regular
expression email_pattern in Line 16. The main change is in Line 32 where all
email addresses that can be found in a page are printed.

11

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)

?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*

)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(
?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t
])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?
:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)
?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)
?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,

;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:
\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])
))@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\
.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(
?:\r\n)?[\t])*))*)?;\s*)

Figure 4: Nothing that can be said…

12

