Compilers and Formal Languages

Email:	christian.urban at kcl.ac.uk
Office Hour:	Thurdays 15 – 16
Location:	N7.07 (North Wing, Bush House)
Slides & Progs:	KEATS
Pollev:	<pre>https://pollev.com/cfltutoratki576</pre>

6 While-Language
7 Compilation, JVM
8 Compiling Functional Languages
9 Optimisations
10 LLVM

The Fun Language

```
def fact(n) = if n == 0 then 1 else n * fact(n - 1);
```

def gcd(a, b) = if b == 0 then a else gcd(b, a % b);

Factorial

```
.method public static fact(I)I
.limit locals 1
.limit stack 6
  iload 0
  1dc 0
  if icmpne If else 0
  ldc 1
  goto If end 1
                             def fact(n) =
If else 0:
                               if n == 0 then 1
  iload 0
  iload 0
                               else n * fact(n - 1)
  1dc 1
  isub
  invokestatic fact/fact(I)I
  imul
If end 1:
  ireturn
.end method
```

```
.method public static facT(II)I Factorial
limit locals 2
.limit stack 6
 iload 0
 1dc 0
 if_icmpne If_else 2
 iload 1
 goto If end 3
If else 2:
                            def facT(n, acc) =
 iload 0
                               if n == 0 then acc
 ldc 1
                               else facT(n - 1, n * acc)
 isub
 iload 0
 iload 1
 imul
 invokestatic fact/fact/facT(II)I
If end 3:
 ireturn
.end method
```

.method public static +	facT(II)I
.limit locals 2	
.limit stack 6	
<pre>facT_Start:</pre>	
iload 0	
ldc 0	
<pre>if_icmpne If_else_2</pre>	
iload 1	
goto If_end_3	
If_else_2:	
iload 0	def facT(n, acc) =
ldc 1	if n == 0 then acc
isub	else facT(n - 1, n * acc);
iload 0	
iload 1	
imul	
istore 1	
istore 0	
goto facT_Start	

If end 3:

CFL 09, King's College London – p. 5/39

Tail Recursion

A call to f(args) is usually compiled as

```
args onto stack invokestatic .../f
```

Tail Recursion

A call to f(args) is usually compiled as

```
args onto stack invokestatic .../f
```

A call is in tail position provided:

• if Bexp then Exp else

- Exp ; Exp
- Exp op Exp then a call f(args) can be compiled as

```
prepare environment
jump to start of function
```

Tail Recursive Call

```
def compile expT(a: Exp, env: Mem, name: String): Instrs =
  . . .
  case Call(n, args) => if (name == n)
    val stores =
      args.zipWithIndex.map { case (x, y) => i"istore $y" }
    args.map(a => compile expT(a, env, "")).mkString ++
    stores.reverse.mkString ++
    i"goto ${n} Start"
  } else {
    val is = "I" * args.length
    args.map(a => compile_expT(a, env, "")).mkString ++
    i"invokestatic XXX/XXX/${n}(${is})I"
```

???

	REM POPPINS SOUND FOR S=15 TO # STEP -1			11 4010	PH+PB-38:0=P1+12:F+ +3:0T+PD-10:P0=PH+
	BOUND #,15,8,5150UND				+ BONUS-1000
	1,14,0,5:NEXT 5 SQUND 0,0,0,0:SQUND 1 ,0,0,0:RETURN	E .		21.4020	68APHICS 18:POKE 74 ,134:POKE 789,198:1 KE 718,84:POKE 754
	a a areturn				,1341FORE 78Y, 1VBI
	NEN CHECK FOR COLLISI				HE/254
		12		11 40 30	
	PEX-PEEK(53261)+IP P				
11002	00TO 1010				CLETR!"
	FOR 1+25 TO 10 STEP			10 40 40	DIM Sector:Se-"Co It
	-5: BOUND 0, 1, 4, 8: 500		LEVEL I		
	ND 1.1+2.2.8:NEXT 1:				STEP IFIPOSITION I
	SCUND 0.0.0.0.SCUND 1.0.0.0.RETURN				017 #41881POBITION
	REM DID BALLODN HIT		missile graphics animate the	14050	.10.7 BAISSINERT I
	NEAD OID BALLOUN HIT		and balloons in the Atari pension		IF PEEK(55279)(>4 1
	IF BY-BB(3 THEN PRAL		oon Crate."		EN 4250
					POKE 53248, 8. POKE 1
	H+11BAL (BDH)=C(1-L, B		IF BOOBDNUE THEN LF-		249, 0:08APHICS 17:F KE 700,134:PDCE 705
			LF+119DNUS+BONUS+120		1981PEKE 710,84
			##LVLICOLDR 721PLOT		POSITION 4,417 841"
	00N7		LF.23 IF BOHCL THEN 2060		ane over "iPOSITION
11020	IF STRIG(#)=# THEN 1	2040	FOR K=5 TO BOHIFOR J		
		1.5606		24120	POSITION S. D. T. PALS
			1:PH&(PD+J,PD+J+121#		POSITION 9,017 8415 POSITION 5,1017 40
1030	A=A+((A)PP)=(A(+PP))		BOINERT JINERT KINER		
					GN 4,1217 861 10 80
	PC, LIRETURN		PRECPT, PRI-NEIRETURN		
				10.4158	
	PAAIIF HIT THEN PAPP +((P)PP)-(P(APP))#3				
				10.4140	
	-3160EUB Seeisouno e			3 4499	
	.E. IS. GIPHSIPISK, P+K		IFOR ISS TO 2 STEP -		ERS
				11 45 00	GRAPHICS STIPSKE ST
	P+P+(((P)PP)-(P(aPP)		R, I, BT: IF BT=32 THEN NEXT 1:0010 2500	# 4510	. #+01M C+(2)+C+0+
	18(P)45 AND P(200)81				CHE-(PEEC(10A)-B) #1
	PEEK(532411=#)11POKE				61CH0+57344
	PC.1 NEXT KIDSUND 0.0.0.0		PENE 705, PEEX(707+E) 1-1, 80/3111A+248(80/ 3+2118L+32+188+POLE		IF PEEKICHS+91<># 3
1070					EN RETURN
1 1 4 9 9	INITALIPEP ISOTO 48 REP MAN MISSED BALLO		53247,A	H 452#	FOR 1-0 TO SILLFORE
	ON NEW MISSED PALLO	11 2524	PHSIPISE, D-BL) -BSIC DLOR 32(PLOT BR, 1		CHS+1, PEEF (CHO+1) IN
11500	PRAIPLOBT, PIOBY-100)	1 2574	BS=(C(1-1, BR/3)+2)/2		SESTORE ASARIFOR 1-
					TO 21 CHP=CHS+1ASC
	PR&(PH, PB)=PB(1, 37)+		851 HETURN		#(1))-32)##:POR 2+0
	PR&IP#+198, PB1-MORS1		REH DRAW SCREEN		TO TIREAD AIPOKE EN
	POKE 53250, PP-01FON 1-200 TO 0 STEP -101				+J, AINERT JINERT I
				11 4550	FOR 1=32 TO 39+PORE
	BOUND 0, 1, 2, 10:NEXT		1=1 TO SIREAD AIF(1)		
			WAINEET LIDATA #. 32.		CHS+1,255-PEEX (CHD+
	SOUND 0,0,0,0,011F BON			E 4540	BATA 28,58,125,125,
			FF=120+POHE 53240,PP		
1520	FOR I-158 TO BE STEP		+BAL=24+LVL=LVL=1+1F	0.4574	21.62.20.0 BOTA 0.10.56.124.54
	-111FOR J=1 TO 175		LVL>10 THEN LVL=10		
	PH&(P#+J,P#+J+12)=14 INEXT J1PH&(P#+J,P#+		FORITION 11,2317 #61	Di 4999	
	J+121=POR+ ddsus Are		TO LFICOLOR 721PLOT	11 5000	DIM PMS(4894), P5(25 1,N8(12), B8(15), P08 (12), MD(8(16), MDR8(
	IFOR K=1 TO 91NEXT K		TO LFICOLOR 721PLOT		1,N#(12),B#(15),P08
		0.3030	FOR AND TO IN STER 3		1121, MDL # (16), MDR # 1
		- 2610	FOR X=3 TO 18 STEP 3	in marine	61,H\$(22) FOR 1=1 TO 12(N\$(1))
1550	FOR I=1 TO LODINEX! IFORE 53250, PICOLON			11 2919	FOR I=1 TO 12(NS(1)) CHRS(0)(NEXT I
	IIPOKE 53258, 81COLON		*FIALSCIV-L.X/31sAIP	11 5424	CHR&(D) INEXT 1 A=ADR(PH\$)(PH\$=INT)
			*FIAIIC(Y-1,X/3) *AIP		/2048)#2048:1F PMB-
	0,0,0,0				72040) \$2040:1F PMB- THEN PMB-PMB-2040
1540	PHS(PT,PB)-PSIPOKE 5	113540			S+PHB-AIFOKE 34277.
			ON DEPENDING PORE 788,1		HB/2561POKE 53277,3
	IFF-128 RETURN REN POP BALLODNS AND				
1444	REN FOF BALLOONS AND				
2000	TALLY POINTS	# 3510	FOR 1=4 TO 16+FOSITI		
	IF BOH I THEN RETURN		GN 1,117 84178(1-3,1	123454	P#+5+10241POKE 784.
2010	FOR 1=1 TO BOHIPHS (P				
10	H+1, PD=13=HS	11 3520	FOSITION 1,017 #61"s	13060	
	PH8(P#+158, PH) = PD8+		core: "18C		D AIPS(1)=CHREIA) IN
2820	PRECPE-158, PH) = PDEE:	1,3520	RETURN		XT I:PHS(PD+69,PD+2
	BOSUB ADDIPOR V=1 TO 15INERT VIPHS(PD+15	(13444	AND STARTING DISPLA	1: 5070	6)=P8
	B, PH) +NE: EGH+EGH+1:P		AND STARTING DISPLA	115070	
	H4 (PH, P3) =P4 (100, 137	11 4 0 5 0	PP-120-89-167-5C-01L		
			VL=01LF=31FC=532781H		0.50,10,10,55,55,12
	SC-SC+BAL(2) #SHLVLIP		*P8-12:PT=P8+69:PB=P		,124,106,105,105,10 ,120,120,40,40,40,40,4
	OBITION 7, #17 #618C1		8+284		,120,120,40,40,40,40,4

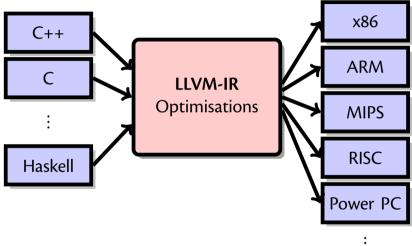
	BE 18 72		77 07781 8 78 07861 8	0 A0 82 80 8		04301 02 E6 17 46 75 80 DE 93 04301 00 D0 E0 60 60 60 07 04
84081	0E CA 34		92 @?@@i F	C AV BC 85 P	DA 08 08 FA 0	BA481 48 81 FC AA 48 10 08 61
	51 BE CN			E BD A9 #2 E		BA48, 40 70 80 51 FE 91 FE 80 50 FE
046.01	0E 0D 4E				2 98 17 28 82	84581 08 67 CB CC 6F ED D8 E8 84581 45 70 ED 51 FE V1 FE A8
04701	14 05 FC	AV BC BS FD AN		# AC 73 00 C		
	00 00 12	BD M9 15 80 44		5 A0 00 EE 7 0 A7 00 80 7		04481 85 40 74 85 85 FF 40 71 94781 85 27 85 FJ 42 48 04 18
05401	77 80 85	73 80 49 90 86	74 07C#1 0	0 10 10 09 5		BATH: 85 29 65 FJ 22 69 DJ 18 BATH: 25 71 80 26 24 18 64 19
85184	71 85 45	## 60 7# 60 2#	05 8708+ 8		1 60 AT OF 50	
	17 09 28	53 07 28 08 8F	7D 87D#+ 8	0 4E 00 2C 0		04031 40 00 04 08 0C 10 14 18
05201	DP FA AZ	## HD 4# ME 11	TO B750 0			BAYRA IC ## #4 #0 #C 1# 14 18 BAYRA IC #1 #5 #2 #5 11 15 19
05301	40 OE EB	EC 07 00 0# F4	M 87EB: F	0 07 40 47 0	00 BF 60 5C	8448: 10 01 05 07 00 11 15 19 8440: 10 01 05 07 00 11 15 19
	CE 07 00	20 62 09 20 EE 89 20 CA 86 4C	0 87F01 A			BAART 10 07 05 07 00 11 15 17
	92 84 65	92 80 89 80 62	C 86001 7			048#1 1E 02 05 04 0E 12 16 14
	AN DE DO	80 AE 88 80 EC			8 60 40 80 CC	0480; 16 03 07 08 09 13 17 18 0400; 17 03 07 08 09 13 17 18
	87 80 74	29 80 45 86 80	17 00101 0			
	45 77 86	E0 73 83 40 ES	17 BE201 D			BAD#1 1# #1 FF F7 58 C6 D4 A2
	00 00 71	ED //Y B# BD B3	M 8828+ 6			04001 90 00 40 49 FF 00 19 00 04001 40 FD 04 49 70 00 19 00
	80 24 85	87 AG 07 80 38 87 80 EE 88 80	2 88301 A			BAER, 4C FR DA 07 71 ED 19 88
10.000	40 54 85	48 40 87 86 ED	5 00301 C			BAF#1 4C FB BA A9 72 80 19 88
85701	01 40 AT	#0 00 03 00 AV	17 8848. P			BAPB: 40 FB BA A7 81 80 53 88 8008: 48 88 67 58 80 20 00 47
	05 00 0A	60 AD 88 80 CD	10 88541 A			
	80 CD 77	BD BA LE AD BA		A 40 92 80 C	07 98 97 88	
85601	80 49 #6	CV 87 98 85 EV				8810; ## 7# C0 80 54 80 AV 88 8829; 80 53 80 46 54 88 70 83
	07 EE 88	80 00 0A 00 AD 40 40 40 00 00 00 00 00 00	C 08761 V			
05001	C9 24 D#	DØ AD BA BD 38		2 60 A3 92 8	0 00 73 00 24	88381 98 #3 40 38 C8 42 FF ED
05501	EV 03 80	#5 AV #7 CE 88				60301 D# FD EE 55 08 D# D3 10
	80 80 84	80 A0 88 80 38 89 80 38 80 76	27 00741 F			
01201	00 00 78	ED 01 01 05 05 30				8850+ VØ BA AØ 20 2E 20 80 BE
05701	ED 78 80	18 40 BA 80 ED	2 8848. 4			8858: 03 08 FT 01 08 AT 08 00 8848: ET 08 08 FE 08 08 50 00
	77 ED ED	00 00 10 05 47	D			ARAE: DO DE DA 40 10 DA 80 L1
	80 ED 67	00 10 69 51 00 70 00 00 00 47	E 88001 F			887#+ 81 90 E4 81 8E 01 83 86
		60 AD SE 80 80		0 F5 AD 14 C		88781 C4 03 05 71 07 05 04 07 08097 86 71 06 CC AA DC D2 AA
	BY BO AL	08 80 8C 07 85	8 8804+ C			
	EØ #5 40 80 7E 80	AD 76 00 00 72	C 88001 C			
		80 80 73 80 A5				0848+ 10 A0 01 00 A0 01 F0 23 0840+ 07 FC FF 97 F0 00 07 F0
	87 80 C4	52 10 35 43 88				
	ED 28 E0 EC ED 74	33 18 05 47 77	6 88F81 C			
	30 64 04	18 40 73 80 34	Y 9766. 6			88881 88 C8 97 88 88 88 88 A8 88 88 A8
	PC 07 07	90 10 E9 07 EE	10 BV141 P	0 20 AS 98 A		00C0: 50 71 DC 00 04 DC 7C 71
	72 80 4C CE 72 80	70 17 00 73 00	17 BV18: 2			00041 0C 1C 04 0C 0E 11 0E CA
	4C 77 84	60 08 80 80 72		0 17 04 55 6	14 04 45 57	09001 AA DA C3 AA 01 C0 AA 04 04 04
	80 AD DA	00 00 73 00 AD			12 CT FT AT	08081 80 D0 A0 81 D0 A0 81 D0
	89 80 CV	255 307 266 AE 383	2 89381 P			0074: A0 01 FC F8 01 FF FF 07
	80 71 80	A1 84 80 81 88	0 0740. 4	C #7 84 D# C		08781 90 E0 01 90 E0 01 00 20 00 00 00 00 00 00 00 00 00 00 00
	20 05 07	A5 57 50 59 EV	F 89561 C			OC481 68 87 55 88 88 5F 88 88
	PE ED 07	00 EE 10 00 4C	23 89501 D			01101 50 00 00 70 00 00 01 00 01101 00 03 07 07 03 07 00
	RD 88: 893	CT ED 50 ET 22		0 49 95 60 0	0 02 00 FD DE	8C18+ P6 83 87 87 87 83 87 86
	53 87 24	42 07 28 EE 07	W 87701 0			8028+ PE 05 03 C# 44 00 D# AF
	28 62 09	20 CA 05 40 PF	1 89701 7			0C34: 81 P4 48 85 P4 44 85 84 9C38: 46 85 80 44 85 84 45 85
BADNO -	00 77 80	80 73 80 20 69		2 80 91 18 0	1 AD 73 80 FO	
	00 14 49	M7 AA 95 FC M7				
	10 05 FD	4C EE 86 AV 56	14 8110. A		0 00 01 1E DA	9054: 80 88 08 88 88 88 88 88 88 8058: 04 68 81 74 78 85 04 68
	85 FC AT	00 05 FD 67 02		1 1E C0 AD 6 0 00 7# 80 9	0 00 41 1E DA	8C58+ D4 A8 81 F4 F8 85 04 A8
	AT 40 ED	71 00 47 00 02	C 89941 1	0 49 00 05 1	98 82 66 61	SCAR: 00 01 04 00 01 04 44 50
	78 80 28	77 BY AD 6A 80	PC 8180/ 1			BC781 CO AA BI CO AA BI CO BA
	FØ 3E CE	6A 80 AD 76 80	10 89C81 7 89C81 8			SC7D: DJ CJ AA DJ DJ BA DJ DC
	60 72 8D 80 20 49	AD 77 80 80 73	a 0100 0	C AF 80 28 6	# 04 2# 3C 63	SCERI TO TO BE AC BC FA BE BC FA
	00 2C 44	BC 05 FD 4C 31	81081 8	A EE 71 80 A		BCYD: FE BC ES BD ED ES BC BD
	97 AT FE	65 FC AT 60 85				8C901 00 04 FE DO DO FE 06 DE
	FD A4 #2	80 40 80 AV 84	BA DIEDI C			SCAP, EP EA SC EC BA RE EA EA SCAD, BC PE EP DO PR SC RC EC
	00 AE ED	AV 85 80 71 80	LA 01701 0			SCADI BC FE EF BD 98 BC BC BC
		PA PE 38 65 55	1.5	0 72 80 08 8	1 15 60 73 48	
877581	83 45 60	AD 74 80 C7 48	44. EN-001 0		5 FC C8 81 91	BELDI EE AV 68 05 ED AV 68 05
07581	AT 20 20	AA 80 54 C2 A3	16 0A101 1 87 0A101 0			BCCB1 EF A0 E0 BC 73 80 AV 00
	74 80 85	24 30 67 08 40		1 1E ED 7# 0	20 50 97 97 44	BCDB1 23 ED FE do do 26 1E CA
87741	8D 83 80	AD 77 80 89 71	72 84281 8	5 1E 18 AT 2		BCK#1 D# FA 2C 7# 80 1# #2 38

Opcodes

84CØ: 8E 18 7D 51 BE 9D 51 BE F7 84C8: C9 ØA 9Ø 12 E9 ØA 9D 51 70 84DØ: ØA FE BE CA 30 51 BE 92 BD B4DB: 51 BE C9 ØA BØ EE 20 EB 75 84EØ1 87 AD 4D BE 09 8D BØ 4D 5E 84E8: BE BD 4D BE 20 4A 85 A9 0E 84FØ: 16 85 FC A9 8C 85 FD A9 CØ 84F8: 00 8D 6D 8D A9 15 8D 6E 17

CFL 09, King's College London – p. 10/39

CFL 09, King's College London – p. 10/39


Peephole Optimisations

- ldc: iconst_0...iconst_5 bipush n where -128 < n <= 128
- iload: iload_0...iload_3
- istore: istore_0...istore_3

- Chris Lattner, Vikram Adve (started in 2000)
- Apple hired Lattner in 2006
- modular architecture, LLVM-IR
- lli and llc

LLVM: Overview

LLVM-IR

```
define i32 @fact (i32 %n) {
   %tmp 19 = icmp eq i32 %n, 0
   br i1 %tmp 19, label %if br 23, label %else br 24
if br 23:
   ret i32 1
else br 24:
   %tmp 21 = sub i32 %n, 1
   %tmp 22 = call i32 @fact (i32 %tmp 21)
   %tmp 20 = mul i32 %n, %tmp 22
   ret i32 %tmp 20
                                    def fact(n) = 
                                      if n == 0 then 1
                                      else n * fact(n - 1)
```

LLVM Types

boolean	i1
byte	i8
short	i16
char	i16
integer	i32
long	i64
float	float
double	double
*	pointer to
**	pointer to a pointer to
[_]	arrays of

LLVM-IR Instructions

br i1 %var, label %if_br, label %else_br

icmp eq i32 %x, %y ; for equal icmp sle i32 %x, %y ; signed less or equal icmp slt i32 %x, %y ; signed less than icmp ult i32 %x, %y ; unsigned less than

%var = call i32 @foo(...args...)

SSA Format

(1+a) + (3 + (b * 5))

tmp0 = <mark>add</mark>	1 a
tmp1 = mul	b 5
tmp2 = add	3 tmp1
tmp3 = add	tmp0 tmp2

Static Single Assignment

Abstract Syntax Trees

// Fun language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp case class If(a: BExp, e1: Exp, e2: Exp) extends Exp case class Write(e: Exp) extends Exp case class Var(s: String) extends Exp case class Num(i: Int) extends Exp case class Aop(o: String, a1: Exp, a2: Exp) extends Exp case class Sequence(e1: Exp, e2: Exp) extends Exp case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

K-(Intermediate)Language

abstract class KExp abstract class KVal

// K-Values
case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

// K-Expressions

case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, v: KVal, e: KExp) extends KExp
case class KReturn(v: KVal) extends KExp

KLet

```
tmp0 = add 1 a
tmp1 = mul b 5
tmp2 = add 3 tmp1
tmp3 = add tmp0 tmp2
 KLet tmp0 , add 1 a in
  KLet tmp1 , mul b 5 in
   KLet tmp2 , add 3 tmp1 in
     KLet tmp3 , add tmp0 tmp2 in
```

• • •

case class KLet(x: String, e1: KVal, e2: KExp)

KLet

tmp0	=	add	1	а
tmp1	=	mul	b	5
tmp2	=	add	3	tmp1
tmp3	=	add	tn	np0 tmp2
1.44				add 1 a to
Ter		-mpo	=	add 1 a in
16	et	tmp1	L =	= mul b 5 in
]	Let	t mp	52	<pre>= add 3 tmp1 in</pre>

let tmp3 = add tmp0 tmp2 in

• • •

case class KLet(x: String, e1: KVal, e2: KExp)

```
def CPS(e: Exp)(k: KVal => KExp) : KExp =
  e match { ... }
```

the continuation k can be thought of:

```
let tmp0 = add 1 a in
let tmp1 = mul 
    5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in
    KReturn tmp3
```

```
def CPS(e: Exp)(k: KVal => KExp) : KExp =
    e match {
        case Var(s) => k(KVar(s))
        case Num(i) => k(KNum(i))
        ...
    }
```

```
let tmp0 = add 1 a in
let tmp1 = mul 
    5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in
    KReturn tmp3
```

```
def CPS(e: Exp)(k: KVal => KExp) : KExp = e match {
  case Aop(o, e1, e2) => {
    val z = Fresh("tmp")
    CPS(e1)(y1 =>
      CPS(e2)(y2 =>
                KLet(z, Kop(o, y1, y2), k(KVar(z))))
  } ...
                 . . .
                 let z = op \square_{v_1} \square_{v_2}
                 let tmp0 = add 1 a in
                 let tmp1 = mul Z 5 in
                 let tmp2 = add 3 tmp1 in
                 let tmp3 = add tmp0 tmp2 in
                   KReturn tmp3
```

```
def CPS(e: Exp)(k: KVal => KExp) : KExp =
    e match {
        case Sequence(e1, e2) =>
            CPS(e1)(_ => CPS(e2)(y2 => k(y2)))
        ...
    }
```

```
let tmp0 = add 1 a in
let tmp1 = mul 
    5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in
    KReturn tmp3
```

```
def CPS(e: Exp)(k: KVal => KExp) : KExp =
  e match {
    . . .
    case If(Bop(o, b1, b2), e1, e2) => {
      val z = Fresh("tmp")
      CPS(b1)(v1 = >
        CPS(b2)(y2 =)
          KLet(z, Kop(o, y1, y2))
                 KIf(z, CPS(e1)(k), CPS(e2)(k))))
     }
    . . .
```

The Basic Language, 1980+

```
5 \text{ LET } S = 0
```

```
10 INPUT V
```

```
20 PRINT "Input number"
```

```
30 IF N = 0 THEN GOTO 99
```

```
40 \text{ FOR } I = 1 \text{ TO } N
```

```
45 LET S = S + V(I)
```

```
50 NEXT I
```

```
60 PRINT S/N
```

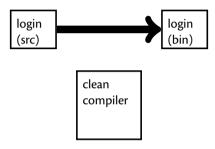
```
70 GOTO 5
```

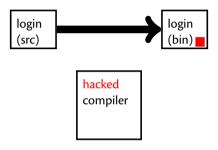
```
99 END
```

"Spaghetti Code"

Target Specific ASM

llc -march=x86-64 fact.ll
llc -march=arm fact.ll

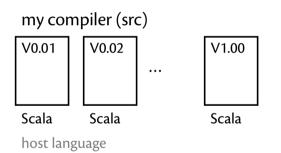

Intel: xorl %eax, %eax ARM: mov pc, lr

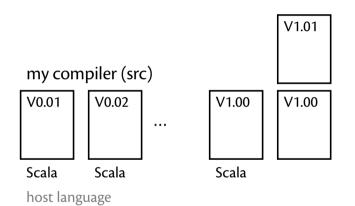

Using a compiler, how can you mount the perfect attack against a system?

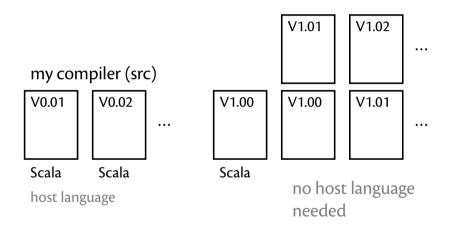
What is a **perfect** attack?

- 1. you can potentially completely take over a target system
- 2. your attack is (nearly) undetectable
- 3. the victim has (almost) no chance to recover

clean compiler




my compiler (src)


V0.01

Scala

host language

Hacking Compilers

Ken Thompson Turing Award, 1983

Ken Thompson showed how to hide a Trojan Horse in a compiler without leaving any traces in the source code. No amount of source level verification will protect you from such Thompson-hacks.

Hacking Compilers

Ken Thompson Turing Award, 19

- 1) Assume you ship the compiler as binary and also with sources.
- 2) Make the compiler aware when it compiles itself.
- 3) Add the Trojan horse.
- 4) Compile.

;0)

- 5) Delete Trojan horse from the sources of the compiler.
- 6) Go on holiday for the rest of your life.

ng any on will

a Tro-

acks.

Hacking Compilers

Ken Thompson Turing Award, 1983

Ken Thompson showed how to hide a Trojan Horse in a compiler without leaving any traces in the source code. No amount of source level verification will protect you from such Thompson-hacks.

Dijkstra on Testing

"Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence."

What is good about compilers: the either seem to work, or go horribly wrong (most of the time).

Proving Programs to be Correct

Theorem: There are infinitely many prime numbers.

Proof ...

similarly

Theorem: The program is doing what it is supposed to be doing.

Long, long proof ...

This can be a gigantic proof. The only hope is to have help from the computer. 'Program' is here to be understood to be quite general (compiler, OS, ...).

Can This Be Done?

- in 2008, verification of a small C-compiler
 - "if my input program has a certain behaviour, then the compiled machine code has the same behaviour"
 - is as good as gcc -01, but much, much less buggy

Fuzzy Testing C-Compilers

- tested GCC, LLVM and others by randomly generating C-programs
- found more than 300 bugs in GCC and also many in LLVM (some of them highest-level critical)
- about CompCert:

"The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are absent. As of early 2011, the under-development version of CompCert is the only compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of trying: we have devoted about six CPU-years to the task."

- Revision Lecture
- How many strings are in $L(a^*)$?

- Revision Lecture
- How many strings are in $L(a^*)$?
- How many strings are in L((a + b)*)?
 Are there more than in L(a*)?