#

CSCI 742 - Compiler Construction

Lecture 30
Control Structures: Efficient Translation
Instructor: Hossein Hojjat

April 9, 2018

Recap: Code Generation for while

[while (cond) stmt] = nStart
nStart: [cond] (cond)?
ifeg(nExit) (ﬁcond)?
[stmt] S

goto (nStart)

nExit: nExit

Code Generation for Relational Expressions

[er < ea] =
[ea]
[e2]
if_icmplt (nTrue)
iconst_0
goto (nExit)
nTrue: iconst_1

nExit:

Compare Two Translations

while (counter < to) {

counter = counter + step;
}
Translation 1: Translation 2:
nBegin: iload #counter nBegin: iload #counter
iload #to iload #to
if_icmplt nTrue if_icmplt nBody
iconst_0 goto nExit
goto nAfter nBody: iload #counter
nTrue: iconst_1 iload #step
nAfter: ifeq nExit iadd
iload #counter istore #counter
iload #step goto nBegin
iadd nExit:

istore #counter
goto nBegin

nExit:

Compare Two Translations

while (counter < to) {

counter = counter + step;
}
Translation 1: Translation 2:
nBegin: iload #counter nBegin: iload #counter
iload #to iload #to
if_icmplt nTrue if_icmplt nBody
iconst_0 goto nExit
goto nAfter nBody: iload #counter
nTrue: iconst_1 iload #step
nAfter: ifeq nExit iadd
iload #counter istore #counter
iload #step goto nBegin
iadd nExit:

istore #counter
goto nBegin

nExit:

Translation 2 immediately jumps to body, no intermediate result for while condition
3

Macro branch Instruction

e Introduce an imaginary big instruction
branch (c,nTrue,nFalse)
e c is a potentially complex Java boolean expression

- Main reason why branch is not a real instruction
e nTrue is label to jump to when c evaluates to true
e nFalse is label to jump to when c evaluates to false

e No “fall through” - always jumps (symmetrical)
We show how to:

e Use branch to compile if, while, etc.

e Expand branch recursively into concrete bytecodes

Using branch in Compilation

[if (c) telsee] =
[while (¢) s] =
branch (¢, nTrue,nFalse)
nTest: Dbranch (¢, nBody, nExit)

nTrue: [t] nBody: []

goto (nAfter)

goto (nTest)
nFalse: [e]

nExit:

nAfter:

Decomposing branch

branch(!c,nThen,nElse) = branch(c,nkElse,nThen)

branch(cl && c2,nThen,nElse) =
branch (cl, nNext,nElse)
nNext: branch(c2,nThen,nElse)

branch (cl,nThen, nNext)
nNext: branch(c2,nThen,nElse)

boolean variable b with slot N
branch (b, nThen, nElse) =
iload N
ifeq nElse
goto nThen

Compiling Relations

branch (e; R ey, nThen,nElse) =
[ed]
[e2]

if_icmpR (nThen)
goto (nElse)

Rcanbe< > == 1= <= >= .

Put Boolean Variable on Stack

e Consider storing x = ¢ where x , ¢ are boolean and ¢ has &&, | |

e How to put result of branch on stack to allow istore?

[x=c =
branch (¢, nThen,nElse)
nThen: iconst_1
goto (nAfter)
nElse: iconst_0

nAfter: istore #x

Complex Boolean Expression: Example

Fewer push/pop of boolean constants compared to previous translation

branch (x<y,nl,else)

nl: branch (y<z,n2, then)
n2: branch (cond, else, then)
if ((x < y) && !'((y < z) && cond)) then: return
return goto after
else else: iload #y
y =y + 1 iconst_1
iadd

istore #y
after:

Implementing branch

e Option 1: emit code using branch, then rewrite

e Option 2: branch is a just a function in the compiler that expands
into instructions

branch (c,nTrue, nFalse)

4

public List<Bytecode> compileBranch (Expression c,
Label nTrue, Label nFalse) {

e The function takes two destination labels

10

break Statement

e A common way to exit from a loop is to use a break statement

while (true) {
codel
if (cond) break;

cond?2

Consider a language that has expressions, assignments, blocks {...},
if, while, and a break statement

e break statement exits the innermost loop and can appear inside
arbitrarily complex blocks and i f conditions

How would translation scheme for such construct look like?

We need a generalization of compilation functions [- -]

11

Destination Parameters in Compilation

e Pass a label to compilation functions [- - -] indicating to which
instructions to jump after they finish
- No fall-through

[x=¢] after = // new parameter 'after’
[e]
istore #x

goto (after) // at the end jump to it

[s1;82] after =

[s1] freshL {

freshL: [so] after

we could have any junk in here
because ([s1] freshL) ends in a jump

12

Translation of if, while, return

[if (c) t else ¢] after =
branch (¢, nTrue,nFalse)
nTrue: [t] atter

nFalse: [e] after

[while (c¢) s] after =
nTest: branch (¢, nBody, after)
nBody: [s] nTest

[return e] after =

[e]

ireturn

13

Generated Code for Example

[i1f (x <y) return; elsey = 2;] after =
iload #x
iload #y
if _icmplt nTrue
goto nFalse

nTrue: return

nFalse: iconst_2

istore #y

goto after
Note: no goto after return because

e translation of if does not generate goto as it did before,
since it passes it to the translation of the body

e translation of return knows it can ignore the after parameter
14

Two Destination Parameters

[s1;s2] after brk =

[s1] freshL brk

freshL: [so] after brk

[x =€] after brk =

[e]
istore #x

goto after

[return e] after brk =

[e]

ireturn

[preak] after brk =
goto brk

[while (c) s] after brk =
test: branch(c,body,after)
body: [s] test after

this is where the second
parameter gets bound to the exit of
the loop

15

if with two parameters

[if (¢) t else e] after brk =
branch (¢, nTrue,nFalse)
nTrue: [t] after brk
nFalse: [e] after brk

16

break and continue

[break] after brk cont =

goto brk

[continue] after brk cont =

goto cont

[while (c¢) s] after brk cont =
nTest: Dbranch(c,nBody,after)

nBody: [s] nTest after nTest

17

