Handout 5

Whenever you want to design a new programming language or implement a
compiler for an existing language, the first task is to fix the basic “words” of
the language. For example what are the keywords, or reserved words, of the
language, what are permitted identifiers, numbers, expressions and so on. One
convenient way to do this is, of course, by using regular expressions.

In this course we want to take a closer look at the WHILE programming
language. This is a simple imperative programming language consisting of
arithmetic expressions, assignments, if-statements and loops. For example the
Fibonacci program can be written in this language as follows:

1 /* Fibonacci Program
2 input: n */

4+ write "Fib";
s read n; // := 19;

¢ minusl := O;

7 minus2 := 1;

s while n > @ do {

9 temp := minus2;

10 minus2 := minusl + minus2;
11 minusl := temp;

12 n :=n -1

13 }3

14 write "Result";
15 write minus2

The keywords in this language will be
while, if, then, else, write, read

In addition we will have some common operators, such as <, >, := and so on,
as well as numbers and strings (which we however ignore for the moment). We
also need to specify what the “whitespace” is in our programming language and
what comments should look like. As a first try, we might specify the regular
expressions for our language roughly as follows

LETTER = a+A+b+B+...

DIGIT = 04+14+24...

KEYWORD = while 4+ if 4+ then + else+ ...
IDENT := LETTER-(LETTER+ DIGIT+ _)*
OP = i=+4<+...

NUM .= DIGIT"

WHITESPACE = (7 7+\n)*

Having the regular expressions in place, the problem we have to solve is:
given a string of our programming language, which regular expression matches



which part of the string. By solving this problem, we can split up a string of
our language into components. For example given the input string

if_true_then_x+2._.else.__x+3
we expect it is split up as follows
if _ true .. then . x + 2 _ else . x + 3

This process of splitting up an input string into components is often called lexing
or scanning. It is usually the first phase of a compiler. Note that the separation
into words cannot, in general, be done by just looking at whitespaces: while
if and true are separated by a whitespace in the example above, this is not
always the case. As can be seen the three components in x+2 are not separated
by any whitespace. Another reason for recognising whitespaces explicitly is
that in some languages, for example Python, whitespaces matters, that is carry
meaning. However in our small language we will eventually just filter out all
whitespaces and also all comments.

Lexing not just separates a string into its components, but also classifies the
components, meaning it explicitly records that if is a keyword, _ a whitespace,
true an identifier and so on. For the moment, though, we will only focus on
the simpler problem of just splitting up a string into components.

There are a few subtleties we need to consider first. For example, say the
string is

iffoo . ..

then there are two possibilities for how it can be split up: either we regard the
input as the keyword if followed by the identifier foo (both regular expressions
match) or we regard iffoo as a single identifier. The choice that is often made
in lexers is to look for the longest possible match. This leaves iffoo as the only
match in this case (since it is longer than if).

Unfortunately, the convention about the longest match does not yet make
the process of lexing completely deterministic. Consider the string

then. ..

Clearly, this string should be identified as a keyword. The problem is that also
the regular expression IDENT for identifiers matches this string. To overcome
this ambiguity we need to rank our regular expressions. In our running example
we just use the ranking

KEYWORD < IDENT < OP < ...

So even if both regular expressions match in the example above, we give pref-
erence to the regular expression for keywords.

Let us see how our algorithm for lexing works in detail. In addition to the
functions nullable and der, it will use the function zeroable defined as follows:



zeroable() L true

zeroable(e) e false

zeroable(c) e false

zeroable(ry + r2) e zeroable(ry) A zeroable(rs)

zeroable(ry - r3) def zeroable(ry) V zeroable(rs)
def

zeroable(r*) = false

Recall that the function nullable(r) tests whether a regular expression can match
the empty string. The function zeroable, on the other hand, tests whether a
regular expression cannot match anything at all. The mathematical way of
stating this property is

zeroable(r) if and only if L(r) = &
For what follows let us fix a set of regular expressions rs as being
KEYWORD, IDENT, WHITESPACE

specifying the “words” of our programming language. The algorithm takes as
input the rs and a string, say

Ci1C2C3C4q ...

and tries to chop off one word from the beginning of the string. If none of the
regular expression in s matches, we will just return the empty string.

The crucial idea in the algorithm is to build the derivatives of all regular
expressions in rs with respect to the first character ¢;. Then we take the results
and continue with building the derivatives with respect to co until we have
either exhausted our input string or all of the regular expressions are “zeroable”.
Suppose the input string is

ilfl2] ..

then building the derivatives with respect to i gives

‘ zeroable
der i (KEYWORD) no
der i (IDENT) no

der i (WHITESPACE) yes

We can eliminate WHITESPACE as a potential candidate, because no derivative
can go from zeroable = yes to no. That leaves the other two regular expressions
as potential candidate and we have to consider the next character, f, from the
input string

‘ zeroable
der £ (der 1 (KEYWORD)) no
der £ (der 1 (IDENT)) no



Since both are ‘no’, we have to continue with 2 from the input string

‘ zeroable
der 2 (der £ (der 1 (KEYWORD))) yes
der 2 (der £ (der 1 (IDENT))) no

Although we now know that the beginning is definitely an IDENT, we do not
yet know how much of the input string should be considered as an IDENT. So
we still have to continue and consider the next derivative.

‘ zeroable
der _ (der 2 (der ¥ (der 1 (IDENT)))) ‘ yes

Since the answer is now ‘yes’ also in this case, we can stop: once all derivatives
are zeroable, we know the regular expressions cannot match any more letters
from the input. In this case we only have to go back to the derivative that is
nullable. In this case it is

der 2 (der f (der i (IDENT)))

which means we recognised an identifier. In case where there is a choice of more
than one regular expressions that are nullable, then we choose the one with the
highest precedence. You can try out such a case with the input string

then._ ..

which can both be recognised as a keyword, but also an identifier.

While in the example above the last nullable derivative is the one directly
before the derivative turns zeroable, this is not always the case. Imagine, iden-
tifiers can be letters, as permuted by the regular expression IDENT, but must
end with an undercore.

NEWIDENT := LETTER-(LETTER+ DIGIT+ _)*-__
If we use NEWIDENT with the input string
iffoo.o .

then it will only become zeroable after the _. has been analysed. In this case
we have to go back to the first ¥ because only

der f (der 1 (KEYWORD))

is nullable. As a result we recognise successfully the keyword if and the re-
maining string needs to be consumed by other regular expressions or lead to a
lexing error.



