
A Crash-Course on Notation
There are innumerable books available about compiler, automata and formal
languages. Unfortunately, they often use their own notational conventions and
their own symbols. This handout is meant to clarify some of the notation I will
use.

Characters and Strings

The most important concept in this module are strings. Strings are composed
of characters. While characters are surely a familiar concept, we will make one
subtle distinction in this module. If we want to refer to concrete characters, like
a, b, c and so on, we use a typewriter font. Accordingly if we want to refer to
the concrete characters of my email address we shall write

christian.urban@kcl.ac.uk

If we also need to explicitly indicate the “space” character, we write . For
example

hello world

But often we do not care which particular characters we use. In such cases we
use the italic font andwrite a, b, c and so on for characters. Therefore if we need
a representative string, we might write

abracadabra (1)

In this string, we do not really care what the characters stand for, except we do
care about the fact that for example the character a is not equal to b and so on.

An alphabet is a (non-empty) finite set of characters. Often the leĴer Σ is
used to refer to an alphabet. For example the ASCII characters a to z form an
alphabet. The digits 0 to 9 are another alphabet. The Greek leĴers α to ω also
form an alphabet. If nothing else is specified, we usually assume the alphabet
consists of just the lower-case leĴers a, b, …, z. Sometimes, however, we explic-
itly want to restrict strings to contain only the leĴers a and b, for example. In
this case we will state that the alphabet is the set {a, b}.

Strings are lists of characters. Unfortunately, there are many ways how we
can write down strings. In programming languages, they are usually wriĴen
as "hello" where the double quotes indicate that we are dealing with a string.
But since we regard strings as lists of characters we could also write this string
as

[h, e, l, l, o] or simply hello

The important point is that we can always decompose such strings. For exam-
ple, we will often consider the first character of a string, say h, and the “rest” of

1

a string say "ello" when making definitions about strings. There are also some
subtleties with the empty string, sometimes wriĴen as "" but also as the empty
list of characters [].1

Two strings, say s1 and s2, can be concatenated, which we write as s1@s2.
Suppose we are given two strings "foo" and "bar", then their concatenation,
writen "foo" @ "bar", gives "foobar". Often we will simplify our life and just
drop the double quoteswhenever it is clearwe are talking about strings, writing
as already in (1) just foo, bar, foobar or foo @ bar.

Some simple properties of string concatenation hold. For example the con-
catenation operation is associative, meaning

(s1@s2)@s3 = s1@(s2@s3)

are always equal strings. The empty string behaves like a unit element, there-
fore

s @ [] = []@ s = s

Occasionally we will use the notation an for strings, which stands for the
string of n repeated as. So anbn is a string that has as many as as bs.

Note however that while for us strings are just lists of characters, program-
ming languages often differentiate between the two concepts. In Scala, for ex-
ample, there is the type of String and the type of lists of characters, List[Char].
They are not the same and we need to explicitly coerce elements between the
two types, for example

scala> "abc".toList
res01: List[Char] = List(a, b, c)

Sets and Languages

We will use the familiar operations ∪, ∩, ⊂ and ⊆ for sets. For the empty set
we will either write ∅ or { }. The set containing the natural numbers 1, 2 and
3, for example, we will write with curly braces as

{1, 2, 3}

The notation ∈ means element of, so 1 ∈ {1, 2, 3} is true and 4 ∈ {1, 2, 3} is
false. Sets can potentially have infinitely many elements. For example the set
of all natural numbers {0, 1, 2, . . .} is infinite. This set is often also abbreviated
as N. We can define sets by giving all elements, for example {0, 1}, but also
by set comprehensions. For example the set of all even natural numbers can be
defined as

{n | n ∈ N ∧ n is even}
1In the literature you can also often find that ε or λ is used to represent the empty string.

2

Though silly, but the set {0, 1, 2} could also be defined by the following set
comprehension

{n | n2 < 9 ∧ n ∈ N}
Notice that set comprehensions could be used to define set union, intersection
and difference:

A ∪ B def
= {x | x ∈ A ∨ x ∈ B}

A ∩ B def
= {x | x ∈ A ∧ x ∈ B}

A\B def
= {x | x ∈ A ∧ x ̸∈ B}

In general set comprehensions are of the form {a | P} which stands for the set
of all elements a (from some set) for which some property P holds.

For defining sets, we will also often use the notion of the “big union”. An
example is as follows: ∪

0≤n
{n2, n2 + 1} (2)

which is the set of all squares and their immediate successors, so

{0, 1, 2, 4, 5, 9, 10, 16, 17, . . .}
A big union is a sequence of unions which are indexed typically by a natural
number. So the big union in (2) could equally be wriĴen as

{0, 1} ∪ {1, 2} ∪ {4, 5} ∪ {9, 10} ∪ . . .

but using the big union notation is more concise.
An important notion in this module are languages, which are sets of strings.

One of the main goals for us will be how to (formally) specify languages and
to find out whether a string is in a language or not.2 Note that the language
containing the empty string {""} is not equal to ∅, the empty language (or
empty set): The former contains one element, namely "" (also wriĴen []), but
the laĴer does not contain any element.

For languages we define the operation of language concatenation, wriĴen
like in the string case as A@B:

A@B def
= {s1@s2 | s1 ∈ A ∧ s2 ∈ B} (3)

Be careful to understand the difference: the @ in s1@s2 is string concatenation,
while A@B refers to the concatenation of two languages (or sets of strings).
As an example suppose A = {ab, ac} and B = {zzz, qq, r}, then A @ B is the
language

2You might wish to ponder whether this is in general a hard or easy problem, where hardness
is meant in terms of Turing decidable, for example.

3

{abzzz, abqq, abr, aczzz, acqq, acr}
Recall the properties for string concatenation. For language concatenation we
have the following properties

associativity: (A@B)@C = A@(B@C)
unit element: A @ {[]} = {[]}@ A = A
zero element: A @∅ = ∅@ A = ∅

Note the difference in the last two lines: the empty set behaves like 0 for mul-
tiplication and the set {[]} like 1 for multiplication (n ∗ 1 = n and n ∗ 0 = 0).

Following the language concatenation, we can define a language power op-
eration as follows:

A0 def
= {[]}

An+1 def
= A @ An

This definition is by recursion on natural numbers. Note carefully that the zero-
case is not defined as the empty set, but the set containing the empty string. So
no maĴer what the set A is, A0 will always be {[]}. (There is another hint about
a connection between the @-operation and multiplication: How is xn defined
recursively and what is x0?)

Next we can define the star operation for languages: A∗ is the union of all
powers of A, or short

A∗ def
=

∪
0≤n

An (4)

This star operation is often also called Kleene-star. Unfolding the definition in
(4) gives

A0 ∪ A1 ∪ A2 ∪ A3 ∪ . . .

which is equal to

{[]} ∪ A ∪ A@A ∪ A@A@A ∪ . . .

We can see that the empty string is always in A∗, no maĴer what A is. This is
because [] ∈ A0. To make sure you understand these definitions, I leave you to
answer what {[]}∗ and ∅∗ are.

Recall that an alphabet is often referred to by the leĴer Σ. We can nowwrite
for the set of all strings over this alphabet Σ∗. In doing so we also include the
empty string as a possible string over Σ. So if Σ = {a, b}, then Σ∗ is

{[], a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, . . .}
or in other words all strings containing as and bs only, plus the empty string.

4

