
Coursework (Strand 2)
This coursework isworth 20% and is due on 7December at 16:00. You are asked
to prove the correctness of the regular expression matcher from the lectures
using the Isabelle theorem prover. You need to submit a theory file containing
this proof. The Isabelle theorem prover is available from

http://isabelle.in.tum.de

This is an interactive theorem prover, meaning that you can make definitions
and state properties, and then help the system with proving these properties.
Sometimes the proofs are also automatic. There is a shortish user guide for
Isabelle, called “Programming and Proving in Isabelle/HOL” at

http://isabelle.in.tum.de/documentation.html

and also a longer (free) book at

http://www.concrete-semantics.org

The Isabelle theorem prover is operated through the jEdit IDE, whichmight not
be an editor that is widely known. JEdit is documented in

http://isabelle.in.tum.de/dist/Isabelle2014/doc/jedit.pdf

If you need more help or you are stuck somewhere, please feel free to contact
me (christian.urban@kcl.ac.uk). I am one of the main developers of Isabelle
and have used it for approximately the 16 years. One of the success stories of
Isabelle is the recent verification of a microkernel operating system by an Aus-
tralian group, see http://sel4.systems. Their operating system is the only
one that has been proved correct according to its specification and is used for
application where high assurance, security and reliability is needed.

The Task
In this coursework you are asked to prove the correctness of the regular ex-
pression matcher from the lectures in Isabelle. For this you need to first specify
what the matcher is supposed to do and then to implement the algorithm. Fi-
nally you need to prove that the algorithm meets the specification. The first
two parts are relatively easy, because the definitions in Isabelle will look very
similar to the mathematical definitions from the lectures or the Scala code that
is supplied at KEATS. For example very similar to Scala, regular expressions
are defined in Isabelle as an inductive datatype:
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datatype rexp =
ZERO

| ONE
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

The meaning of regular expressions is given as usual:

L(0) def
= ∅ ZERO

L(1) def
= {[]} ONE

L(c) def
= {[c]} CHAR

L(r1 + r2)
def
= L(r1) ∪ L(r2) ALT

L(r1 · r2)
def
= L(r1)@ L(r2) SEQ

L(r∗) def
= (L(r))∗ STAR

You would need to implement this function in order to state the theorem about
the correctness of the algorithm. The function L should in Isabelle take a rexp
as input and return a set of strings. Its type is therefore

L :: rexp⇒ string set

Isabelle treats strings as an abbreviation for lists of characters. This means you
can paĴern-match strings like lists. The union operation on sets (for the ALT-
case) is a standard definition in Isabelle, but not the concatenation operation
on sets and also not the star-operation. You would have to supply these def-
initions. The concatenation operation can be defined in terms of the append
function, wriĴen _ @ _ in Isabelle, for lists. The star-operation can be defined
as a “big-union” of powers, like in the lectures, or directly as an inductive set.

The functions for the matcher are shown in Figure ??. The theorem that
needs to be proved is

theorem
"matches r s ←→ s ∈ L r"

which states that the function matches is true if and only if the string is in the
language of the regular expression. A proof for this lemma will need side-
lemmas about nullable and der. An example proof in Isabelle that will not
be relevant for the theorem above is given in Figure ??.
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fun
nullable :: "rexp ⇒ bool"

where
"nullable ZERO = False"

| "nullable ONE = True"
| "nullable (CHAR _) = False"
| "nullable (ALT r1 r2) = (nullable(r1) ∨ nullable(r2))"
| "nullable (SEQ r1 r2) = (nullable(r1) ∧ nullable(r2))"
| "nullable (STAR _) = True"

fun
der :: "char ⇒ rexp ⇒ rexp"

where
"der c ZERO = ZERO"

| "der c ONE = ZERO"
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) =

(if (nullable r1) then ALT (SEQ (der c r1) r2) (der c r2)
else SEQ (der c r1) r2)"

| "der c (STAR r) = SEQ (der c r) (STAR r)"

fun
ders :: "rexp ⇒ string ⇒ rexp"

where
"ders r [] = r"

| "ders r (c # s) = ders (der c r) s"

fun
matches :: "rexp ⇒ string ⇒ bool"

where
"matches r s = nullable (ders r s)"

Figure 1: The definition of the matcher algorithm in Isabelle.
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fun
zeroable :: "rexp ⇒ bool"

where
"zeroable ZERO = True"

| "zeroable ONE = False"
| "zeroable (CHAR _) = False"
| "zeroable (ALT r1 r2) = (zeroable(r1) ∧ zeroable(r2))"
| "zeroable (SEQ r1 r2) = (zeroable(r1) ∨ zeroable(r2))"
| "zeroable (STAR _) = False"

lemma
"zeroable r ←→ L r = {}"

proof (induct)
case (ZERO)
have "zeroable ZERO" "L ZERO = {}" by simp_all
then show "zeroable ZERO ←→ (L ZERO = {})" by simp

next
case (ONE)
have "¬ zeroable ONE" "L ONE = {[]}" by simp_all
then show "zeroable ONE ←→ (L ONE = {})" by simp

next
case (CHAR c)
have "¬ zeroable (CHAR c)" "L (CHAR c) = {[c]}" by simp_all
then show "zeroable (CHAR c) ←→ (L (CHAR c) = {})" by simp

next
case (ALT r1 r2)
have ih1: "zeroable r1 ←→ L r1 = {}" by fact
have ih2: "zeroable r2 ←→ L r2 = {}" by fact
show "zeroable (ALT r1 r2) ←→ (L (ALT r1 r2) = {})"

using ih1 ih2 by simp
next

case (SEQ r1 r2)
have ih1: "zeroable r1 ←→ L r1 = {}" by fact
have ih2: "zeroable r2 ←→ L r2 = {}" by fact
show "zeroable (SEQ r1 r2) ←→ (L (SEQ r1 r2) = {})"

using ih1 ih2 by (auto simp add: Conc_def)
next

case (STAR r)
have "¬ zeroable (STAR r)" "[] ∈ L (r) ^ 0" by simp_all
then show "zeroable (STAR r) ←→ (L (STAR r) = {})"

by (simp (no_asm) add: Star_def) blast
qed

Figure 2: An Isabelle proof about the function zeroable.
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