Compilers and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk

Office: N7.07 (North Wing, Bush House)

Slides: KEATS (also homework and course-
work is there)

Scala Book, Exams

@ https://nms.kcl.ac.uk/christian.urban/ProgInScalazed.pdf
e homeworks (written exam 80%)
e coursework (20%)

e short survey at KEATS; to be answered until
Sunday

Regular Expressions

In programming languages they are often used to
recognise:

symbols, digits

identifiers

numbers (non-leading zeros)
keywords

comments

http://www.regexper.com

http://www.regexper.com

Last Week

Last week I showed you a regular expression
matcher that works provably correct in all cases
(we only started with the proving part though)

matchessr if and only if s € L(r)

by Janusz Brzozowski (1964)

The Derivative of a Rexp

derc (o)

derc (1)

derc (d)

derc(r; +1,)
(

2
derc(ry-r,)

derc (r*)
ders || r

ders (c::5)r

def
=0
def
=0

def .

= if c = d then 1 else 0
def
= dercr, +dercr,

S if nullable(r,)
then (dercr,) -r, +dercr,
else (dercr,) - r,

S (dercr) - (r*)

def
=r

< derss (dercr)

Example
Givenr = ((2-b) +b)* what is

dera((a-b)+b)" = dera((a-b)+5b)*

= (dera((a-b)+6))-r

= ((dera(a-b)) + (derab))-r
= (((deraa)-b)+ (derab)) -r
= ((x-b)+ (derab)) -r

= ((x-8)+0)-r

Input: string @bc and regular expression 7

Q derar
Q derb (derar)
Q derc(derb (derar))

Input: string @bc and regular expression 7

Q@ derar
Q derb (derar)
Q derc (derb (derar))

Q@ finally check whether the last regular expression
can match the empty string

Simplification

Givenr £ ((2-b) + b)* what is

((x-6)+o0)-r

=

((1-2) +o0)-7
(6+o0) 7

b-r

We proved partially
nullable(r) if and only if [| € L(r)

by induction on the regular expression 7.

We proved partially
nullable(r) if and only if [| € L(r)

by induction on the regular expression 7.

Any Questions?

We need to prove
L(dercr) = Derc (L(r))

also by induction on the regular expression 7.

Proofs about Rexps

@ Pholds for 0, 1 and ¢

e P holds for 7, + 7, under the assumption that P
already holds for 7, and 7.

e P holds for 7, - , under the assumption that P
already holds for 7, and 7.

e P holds for 7* under the assumption that P
already holds for 7.

Proofs about Natural
Numbers and Strings

@ P holds for o and

e P holds for 7 + 1 under the assumption that P
already holds for »

e P holds for [] and

@ P holds for ¢::s under the assumption that P
already holds for s

Regular Expressions

r 1= o nothing
| x empty string / " /]
| ¢ character
| e, sequence
| 7, alternative / choice
| star (zero or more)

How about ranges [¢-z|, 7" and ~ 7? Do they
increase the set of languages we can recognise?

Negation of Regular Expr’s

o ~r (everything that » cannot recognise)
o L(~r) = UNIV — L(r)
o nullable(~ r) = not (nullable(r))

o derc(~r) = ~ (dercr)

Negation of Regular Expr’s

o ~r (everything that » cannot recognise)
o L(~r) = UNIV — L(r)

o nullable(~ r) = not (nullable(r))

o derc(~r) = ~ (dercr)

Used often for recognising comments:

[k (~ ([az]" %/ [az]")) -/

Negation

Assume you have an alphabet consisting of the
letters #, 4 and ¢ only. Find a (basic!) regular
expression that matches all strings except @b and ac!

Automata

A deterministic finite automaton, DFA,
consists of:
an alphabet X
a set of states Q|
one of these states is the start state Q
some states are accepting states F, and
there is transition function ¢
which takes a state as argument and a character and

produces a new state; this function might not be
everywhere defined = partial function

A4(£,QQ,,F,9)

a a
start —{ Q, —>(Q, —{(Q, [D 4,4

o the start state can be an accepting state
e it is possible that there is no accepting state

o all states might be accepting (but this does not
necessarily mean all strings are accepted)

for this automaton ¢ is the function

(Qor2) = Q, (Qua) = Q, (Qu2) = Q,
(Qo8) = Q, (Q,0) = Q, (Qu0)—=Q, ™

Accepting a String
Given

A(Z,Q,Q, F,9)

you can define

Accepting a String
Given

A(Z,Q,Q, F,9)

you can define

- 6(5(g,¢),9)
Whether a string s is accepted by A4?

~

0(Q,,5) €F

Regular Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

Regular Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. 2"4” is not

Regular Languages (2)
A language is regular iff there exists a regular
expression that recognises all its strings.
or equivalently
A language is regular iff there exists a

deterministic finite automaton that recognises all
its strings.

Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA)
consists again of:

e a finite set of states

e some these states are the start states

@ some states are accepting states, and

e there is transition relation

(Qua) = Q,
(Qua) = Q; ™

Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA)
consists again of:

e a finite set of states

e some these states are the start states

@ some states are accepting states, and

e there is transition relation

E Z; :83 - (Qua) = {Q, Q)

An NFA Example

Two Epsilon NFA Examples

start

Rexp to NFA

Caser; -7,

By recursion we are given two automata:

7y 7,

start O start —{) O

start T © PR ©
start © start —>O ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caser; -7,

By recursion we are given two automata:

ry-r,

start = ©
start B B ©
start s ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caser;+r,
By recursion we are given two automata:
Ty

~

start —>O @

start —) O

start o O
@)

We can just put both automata together.

Caser;+r,

By recursion we are given two automata:
e+,

start —>O @

start —) O

start —() -+ ()
\ O

We can just put both automata together.

Caser”

By recursion we are given an automaton for 7:

start —) O

start —{) O

Caser”

By recursion we are given an automaton for 7:

Caser”

By recursion we are given an automaton for 7:

start

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

Subset Construction

Subset Construction

Subset Construction

a b

{+ {}
{o,1,2} {2}

{r} {}

Subset Construction

Subset Construction

nodes a b
{} {+ {}
{o} [{o12} {2}
{1} {r} {}

The Result

Removing Dead States

DFA: (original) NFA:

Regexps and Automata

Thompson’s subset
construction construction

Regexps mmp NFAs ==p DFAs

Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DE As

minimisation

DFA Minimisation

@ Take all pairs (¢,p) with g # p
© Mark all pairs that accepting and non-accepting
states

@ For all unmarked pairs (¢,p) and all characters ¢

test whether
(6(g,¢),6(p,¢))
are marked. If yes in at least one case, then also

mark (g,p).

Repeat last step until no change.

© 0

All unmarked pairs can be merged.

a a
start —>{ Qo —>(Q, —(Q, /D 4,4

Alternatives ,

Alternatixges

@ exchange initial / accepting states

Alternatixges

@ exchange initial / accepting states

@ reverse all edges

Alternatixges

@ exchange initial / accepting states
@ reverse all edges
@ subset construction = DFA

Alternatixges

exchange initial / accepting states
reverse all edges
subset construction = DFA

remove dead states

Alternatixges

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more = minimal DFA

Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DF As

minimisation

Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DF As

\/ minimisation

DFA to Rexp

a
o — @D D>
5 b

start

a

You know how to solve since school days, no?

Qo =2Q,+3Q, +4Q,
Q =2Q,+3Q, +1Q,
Q, =1Q, +5Q,+2Q,

start

start

OL

Q.

1+Q,6+Q,6+Q,5
Q,a
Q,2+Q,a

a

Q, =1+Q.,6+Q,6+Q,5
Q, = Q.42
Q, =0Q,¢+Q,a

Arden’s Lemma:

Iftg =¢gr+s then g =s7"

Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é DF As

\/ minimisation

Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently
A language is regular iff there exists a

deterministic finite automaton that recognises all
its strings.

Regular Languages (3)

A language is regular iff there exists a regular

expression that recognises all its strings.

or equivalently

A language is regular iff there exists a
deterministic finite automaton that recognises all

its strings.

Why is every finite set of strings a regular
language?

Given the function

(=
)
-

rev(o

o
a
-~

I
- o

rev(x

(=
]
)-r.

rev(c

)
)
)
rev(r; +r,)
)
)

& &
N -
/—\
3
|

3
<
—

N
N

~—r

rev(r, - r,

g |
\ \ \
/—\
o
*_/\./
3
Q
—~
3
~—

>k

rev(r
and the set
RevA < {s7"|se4d}

prove whether
L(rev(r)) = Rev(L(r))

