
Handout 6 (Parser Combinators)
This handout explains how parser combinatorswork and how they can be imple-
mented in Scala. Their most distinguishing feature is that they are very easy to
implement (admiĴedly it is only easy in a functional programming language).
Another good point of parser combinators is that they can deal with any kind of
input as long as this input is of “sequence-kind”, for example a string or a list of
tokens. The only two properties of the inputwe need is to be able to test when it
is empty and “sequentially” take it apart. Strings and lists fit this bill. However,
parser combinators also have their drawbacks. For example they require that
the grammar to be parsed is not left-recursive and they are efficient only when
the grammar is unambiguous. It is the responsibility of the grammar designer
to ensure these two properties.

The general idea behind parser combinators is to transform the input into
sets of pairs, like so

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

Given the extended effort we have spent implementing a lexer in order to gen-
erate list of tokens, it might be surprising that inwhat followswe shall often use
strings as input, rather than list of tokens. This is for making the explanation
more lucid. It does not make our previous work on lexers obsolete (remem-
ber they transform a string into a list of tokens). Lexers will still be needed for
building a somewhat realistic compiler.

As mentioned above, parser combinators are relatively agnostic about what
kind of input they process. In my Scala code I use the following polymorphic
types for parser combinators:

input: I output: T

That is they take as input something of type I and return a set of pairs of type
Set[(T, I)]. Since the input needs to be of “sequence-kind”, I actually have to
often write I <% Seq[_] for the input type. This ensures the input is a subtype
of Scala sequences. The first component of the generated pairs corresponds to
what the parser combinator was able to process from the input and the sec-
ond is the unprocessed part, or leftover, of the input (therefore the type of this
unprocessed part is the same as the input). A parser combinator might return
more than one such pair; the idea is that there are potentially several ways of
how to parse the input. As a concrete example, consider the string

i f f o o t e s t b a r

Wemight have a parser combinator which tries to interpret this string as a key-
word (if) or as an identifier (iffoo). Then the output will be the set{(

i f , f o o t e s t b a r
)

,
(
i f f o o , t e s t b a r

)}
1

where the first pair means the parser could recognise if from the input and
leaves the foo testbar as ‘unprocessed’ part; in the other case it could recog-
nise iffoo and leaves testbar as unprocessed. If the parser cannot recognise
anything from the input at all, then parser combinators just return the empty
set {}. This will indicate something “went wrong”…ormore precisely, nothing
could be parsed.

Also important to note is that the type T for the processed part is different
from the input type I in the parse. In the example above is just happens to be
the same. The reason for the potential difference is that in general we are inter-
ested in transforming our input into something “different”…for example into
a tree; or if we implement the grammar for arithmetic expressions, wemight be
interested in the actual integer number the arithmetic expression, say 1 + 2 *
3, stands for. In thiswaywe can use parser combinators to implement relatively
easily a calculator, for instance.

The main idea of parser combinators is that we can easily build parser com-
binators out of smaller components following very closely the structure of a
grammar. In order to implement this in an object-oriented programming lan-
guage, like Scala, we need to specify an abstract class for parser combinators.
This abstract class states that the function parse takes an argument of type I
and returns a set of type Set[(T, I)].

abstract class Parser[I, T] {
def parse(in: I) : Set[(T, I)]

def parse_all(in: I) : Set[T] =
for ((head, tail) <- parse(in); if (tail.isEmpty))

yield head
}

It is the obligation in each instance (parser combinator) to supply an imple-
mentation for parse. From this function we can then “centrally” derive the
function parse_all, which just filters out all pairs whose second component is
not empty (that is has still some unprocessed part). The reason is that at the
end of the parsing we are only interested in the results where all the input has
been consumed and no unprocessed part is left over.

One of the simplest parser combinators recognises just a single character,
say c, from the beginning of strings. Its behaviour can be described as follows:

• If the head of the input string starts with a c, then return the set

{(c, tail of s)}

where tail of s is the unprocessed part of the input string.

• Otherwise return the empty set {}.

2

The input type of this simple parser combinator is String and the output type
is Char. This means parse returns Set[(Char, String)]. The code in Scala is
as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(in: String) =

if (in.head == c) Set((c, in.tail)) else Set()
}

You can see parse tests whether the first character of the input string in is equal
to c. If yes, then it splits the string into the recognised part c and the unpro-
cessed part in.tail. In case in does not start with c then the parser returns
the empty set (in Scala Set()). Since this parser recognises characters and just
returns characters as the processed part, the output type of the parser is Char.

If we want to parse a list of tokens and interested in recognising a number
token, for example, we could write something like this

case object NumParser extends Parser[List[Token], Int] {
def parse(ts: List[Token]) = ts match {

case Num_token(s)::ts => Set((s.toInt, ts))
case _ => Set ()

}
}

In this parser the input is of type List[Token]. The function parse looks at
the input ts and checks whether the first token is a Num_token (let us assume
our lexer generated these tokens for numbers). But this parser does not just
return this token (and the rest of the list), like the CharParser above, rather it
extracts also the string s from the token and converts it into an integer. The
hope is that the lexer did its work well and this conversion always succeeds.
The consequence of this is that the output type for this parser is Int, not Token.
Such a conversionwould be needed ifwewant to implement a simple calculator
program, because string-numbers need to be transformed into Int-numbers in
order to do the calculations.

These simple parsers that just look at the input and do a simple transforma-
tion are often called atomic parser combinators. More interesting are the parser
combinators that build larger parsers out of smaller component parsers. There
are three such parser combinators that can be implemented generically. The
alternative parser combinator is as follows: given two parsers, say, p and q, we
apply both parsers to the input (remember parsers are functions) and combine
the output (remember they are sets of pairs):

p(input) ∪ q(input)

In Scala we can implement alternative parser combinator as follows

3

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(in: I) = p.parse(in) ++ q.parse(in)
}

The types of this parser combinator are again generic (we have I for the input
type, and T for the output type). The alternative parser builds a new parser
out of two existing parsers p and qwhich are given as arguments. Both parsers
need to be able to process input of type I and return in parse the same output
type Set[(T, I)].1 The alternative parser runs the input with the first parser
p (producing a set of pairs) and then runs the same input with q (producing
another set of pairs). The result should be then just the union of both sets,
which is the operation ++ in Scala.

The alternative parser combinator allows us to construct a parser that parses
either a character a or b using the CharParser shown above. For this we can
write

new AltParser(CharParser('a'), CharParser('b'))

Later on we will use Scala mechanism for introducing some more readable
shorthand notation for this, like "a" | "b". Let us look in detail at what this
parser combinator produces with some sample strings.

input strings output

a c d e →
{
(a , c d e)

}
b c d e →

{
(b , c d e)

}
c c d e → {}

We receive in the first two cases a successful output (that is a non-empty set).
In each case, either a or b is in the processed part, and cde in the unprocessed
part. Clearly this parser cannot parse anything with ccde, therefore the empty
set is returned.

A bit more interesting is the sequence parser combinator. Given two parsers,
say again, p and q, we want to apply first the input to p producing a set of pairs;
then apply q to all the unparsed parts in the pairs; and then combine the results.
Mathematically we would write something like this for the result set of pairs:

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

1There is an interesting detail of Scala, namely the => in front of the types of p and q. They will
prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.

4

Notice that the p will first be run on the input, producing pairs of the form
(output1, u1) where the u1 stands for the unprocessed, or leftover, parts pf p.
We want that q runs on all these unprocessed parts u1. Therefore these unpro-
cessed parts are fed into the second parser q. The overall result of the sequence
parser combinator is pairs of the form ((output1, output2), u2). This means the
unprocessed part of the sequqnce p[arser combinator is the unprocessed part
the second parser q leaves as leftover. The processed parts of of the component
parsers is a pair consisting of the outputs of p and q, namely (output1, output2).
This behaviour can be implemented in Scala as follows:

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {

def parse(in: I) =
for ((output1, u1) <- p.parse(in);

(output2, u2) <- q.parse(u1))
yield ((output1, output2), u2)

}

This parser takes again as arguments two parsers, p and q. It implements parse
as follows: let first run the parser p on the input producing a set of pairs (output1,
u1). The u1 stands for the unprocessed parts left over by p. Let then q run on
these unprocessed parts producing again a set of pairs. The output of the se-
quence parser combinator is then a set containing pairs where the first compo-
nents are again pairs, namely what the first parser could parse together with
what the second parser could parse; the second component is the unprocessed
part left over after running the second parser q. Therefore the input type of the
sequence parser combinator is as usual I, but the output type is

(T, S)

Thismeans parse in the sequence parser combinator returns sets of type Set[((T,
S), I)]. Notice that we have essentially two output types for the sequence
parser combinator (packaged in a pair), because in general p and q might pro-
duce different things (for example first we recognise a number and then a string
corresponding to an operator). If any of the runs of p and q fail, that is produce
the empty set, then parsewill also produce the empty set.

With the shorthand notationwe shall introduce later for the sequence parser
combinator, we can write for example "a" ~ "b", which is the parser combi-
nator that first recognises the character a from a string and then b. Let us look
again at three examples of how this parser combinator processes some strings:

input strings output

a b c d e →
{
((a , b), c d e)

}
b a c d e → {}
c c c d e → {}

5

In the first line we have a successful parse, because the string starts with ab,
which is the prefix we are looking for. But since the parsing combinator is con-
structed as sequence of the two simple (atomic) parsers for a and b, the result
is a nested pair of the form ((a, b), cde). It is not a simple pair (ab, cde)
as one might erroneously expect. The parser returns the empty set in the other
examples, because they do not fit with what the parser is supposed to parse.

A slightly more complicated parser is ("a" | "b") ~ "c" which parses as
first character either an a or b, followed by a c. This parser produces the fol-
lowing outputs.

input strings output

a c d e →
{
((a , c), d e)

}
b c d e →

{
((b , c), d e)

}
a b d e → {}

Now consider the parser ("a" ~ "b") ~ "c"which parses a, b, c in sequence.
This parser produces the following outputs.

input strings output

a b c d e →
{
(((a , b), c), d e)

}
a b d e → {}
b c d e → {}

The second and third example fail, because something is “missing” in the se-
quence we are looking for. The first succeeds but notice how the results nest
with sequences: the parsed part is a nested pair of the form ((a, b), c). If
we nest the sequence parser differently, for example "a" ~ ("b" ~ "c"), then
also our output pairs nest differently

input strings output

a b c d e →
{
((a , (b , c)), d e)

}
Two more examples: first consider the parser ("a" ~ "a") ~ "a" and the in-
put aaaa:

input string output

a a a a →
{
(((a , a), a), a)

}
Notice how again the results nest deeper and deeper as pairs (the last a is in the
unprocessed part). To consume everything of this string we can use the parser
(("a" ~ "a") ~ "a") ~ "a". Then the output is as follows:

input string output

a a a a →
{
((((a , a), a), a), "")

}

6

This is an instance where the parser consumed completely the input, meaning
the unprocessed part is just the empty string. So if we called parse_all, instead
of parse, we would get back the result{

(((a , a), a), a)
}

where the unprocessed (empty) parts have been stripped away from the pairs;
everything where the second part was not empty has been thrown away as
well, because they represent ultimately-unsuccessful-parses. The main point
is that the sequence parser combinator returns pairs that can nest according to
the nesting of the component parsers.

Consider also carefully that constructing a parser such "a" | ("a" ~ "b")
will result in a typing error. The intention with this parser is that we want to
parse an a, or an a followed by a b. However, the first parser has as output
type a single character (recall the type of CharParser), but the second parser
produces a pair of characters as output. The alternative parser is required to
have both component parsers to have the same type—we need to be able to
build the union of two sets, which means in Scala they need to be of the same
type. Since ther are not, there is a typing error in this example. Wewill see later
how we can build this parser without the typing error.

The next parser combinator, called semantic action, does not actually com-
bine smaller parsers, but applies a function to the result of a parser. It is imple-
mented in Scala as follows

class FunParser[I, T, S]
(p: => Parser[I, T],
f: T => S) extends Parser[I, S] {

def parse(in: I) =
for ((head, tail) <- p.parse(in)) yield (f(head), tail)

}

This parser combinator takes a parser p (with input type I and output type T)
as one argument but also a function f (with type T => S). The parser p pro-
duces sets of type Set[(T, I)]. The semantic action combinator then applies
the function f to all the ‘processed’ parser outputs. Since this function is of
type T => S, we obtain a parser with output type S. Again Scala lets us intro-
duce some shorthand notation for this parser combinator. Therefore we will
write p ==> f for it.

What are semantic actions good for? Well, they allow you to transform the
parsed input into datastructures you can use for further processing. A simple
example would be to transform parsed characters into ASCII numbers. Sup-
pose we define a function f (from characters to ints) and use a CharParser for
parsing the character c.

val f = (c: Char) => c.toInt
val c = new CharParser('c')

7

We then can run the following two parsers on the input cbd:

c.parse("cbd")
(c ==> f).parse("cbd")

In the first line we obtain the expected result Set(('c', "bd")), whereas the
second produces Set((99, "bd"))—the character has been transformed into
an ASCII number.

A slightly less contrived example is about parsing numbers (recall NumParser
above). However, we want to do this here for strings. For this assume we have
the following RegexParser.

import scala.util.matching.Regex

case class RegexParser(reg: Regex) extends Parser[String, String] {
def parse(in: String) = reg.findPrefixMatchOf(in) match {

case None => Set()
case Some(m) => Set((m.matched, m.after.toString))

}
}

This parser takes a regex as argument and splits up a string into a prefix and the
rest according to this regex (reg.findPrefixMatchOf generates amatch—in the
successful case—and the corresponding strings can be extracted with matched
and after). Using this parser we can define a NumParser for strings as follows:

val NumParser = RegexParser("[0-9]+".r)

This parser will recognise a number at the beginning of a string, for example

NumParser.parse("123abc")

produces Set((123,abc)). The problem is that 123 is still a string (the required
double-quotes are not printed by Scala). We want to convert this string into the
corresponding Int. We can do this as follows using a semantic action

(NumParser ==> (s => s.toInt)).parse("123abc")

The function in the semantic action converts a string into an Int. Let us come
back to semantic actions when we are going to implement actual context-free
gammars.

8

Shorthand notation for parser combinators

Before we proceed, let us just explain the shorthand notation for parser combi-
nators. Like for regular expressions, the shorthand notation will make our life
much easier when writing actual parsers. We can define some implicits which
allow us to write p | q, p ~ q and p ==> f as well as to use plain strings for
specifying simple string parsers.

The idea is that this shorthand notation allows us to easily translate context-
free grammars into code. For example recall our context-free grammar for
palindromes:

P ::= a · P · a | b · P · b | a | b | ϵ

Each alternative in this grammar translates into an alternative parser combina-
tor. The · can be translated to a sequence parser combinator. The parsers for a,
b and ϵ can be simply wriĴen as "a", "b" and "".

How to build parsers using parser combinators?

The beauty of parser combinators is the ease with which they can be imple-
mented and how easy it is to translate context-free grammars into code (though
the grammars need to be non-left-recursive). To demonstrate this recall the
grammar for palindromes from above. The first idea would be to translate it
into the following code

lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") | ("b" ~ Pal ~ "b") | "a" | "b" | "")

Unfortunately, this does not quite work yet as it produces a typing error. The
reason is that the parsers "a", "b" and "" all produce strings as output type
and therefore can be put into an alternative ...| "a" | "b" | "". But both
"a" ~ Pal ~ "a" and "b" ~ Pal ~ "b"produce pairs of the form (((_, _), _), _)—
that is how the sequence parser combinator nests results when ~ is used be-
tween two components. The solution is to use a semantic action that “flaĴens”
these pairs and appends the corresponding strings, like

lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") ==> { case ((x, y), z) => x + y + z } |
("b" ~ Pal ~ "b") ==> { case ((x, y), z) => x + y + z } |
"a" | "b" | "")

Now in all cases we have strings as output type for the parser variants. The
semantic action
Important to note is that we must define Pal-parser as a lazy value.

Implementing an Interpreter

9

