Handout 6 (Parser Combinators)

This handout explains how *parser combinators* work and how they can be implemented in Scala. Their most distinguishing feature is that they are very easy to implement (admittedly it is only easy in a functional programming language). Another good point of parser combinators is that they can deal with any kind of input as long as this input is of "sequence-kind", for example a string or a list of tokens. The only two properties of the input we need is to be able to test when it is empty and "sequentially" take it apart. Strings and lists fit this bill. However, parser combinators also have their drawbacks. For example they require that the grammar to be parsed is *not* left-recursive and they are efficient only when the grammar is unambiguous. It is the responsibility of the grammar designer to ensure these two properties.

The general idea behind parser combinators is to transform the input into sets of pairs, like so

list of tokens
$$
\Rightarrow
$$
 set of (parsed input, unparsed input) output

Given the extended effort we have spent implementing a lexer in order to generate list of tokens, it might be surprising that in what follows we shall often use strings as input, rather than list of tokens. This is for making the explanation more lucid. It does not make our previous work on lexers obsolete (remember they transform a string into a list of tokens). Lexers will still be needed for building a somewhat realistic compiler.

As mentioned above, parser combinators are relatively agnostic about what kind of input they process. In my Scala code I use the following polymorphic types for parser combinators:

input: I output: T

That is they take as input something of type I and return a set of pairs of type Set $[(T, I)]$. Since the input needs to be of "sequence-kind", I actually have to often write I <% Seq[_] for the input type. This ensures the input is a subtype of Scala sequences. The first component of the generated pairs corresponds to what the parser combinator was able to process from the input and the second is the unprocessed part, or leftover, of the input (therefore the type of this unprocessed part is the same as the input). A parser combinator might return more than one such pair; the idea is that there are potentially several ways of how to parse the input. As a concrete example, consider the string

i f f o o t e s t b a r

We might have a parser combinator which tries to interpret this string as a keyword (if) or as an identifier (iffoo). Then the output will be the set

 $\{(\mathbf{i} + \mathbf{j} + \mathbf{e}) \circ \mathbf{h} \circ \mathbf{h}$

where the first pair means the parser could recognise if from the input and leaves the foo_testbar as 'unprocessed' part; in the other case it could recognise iffoo and leaves _testbar as unprocessed. If the parser cannot recognise anything from the input at all, then parser combinators just return the empty set *{}*. This will indicate something "went wrong"…or more precisely, nothing could be parsed.

Also important to note is that the type T for the processed part is different from the input type I in the parse. In the example above is just happens to be the same. The reason for the potential difference is that in general we are interested in transforming our input into something "different"…for example into a tree; or if we implement the grammar for arithmetic expressions, we might be interested in the actual integer number the arithmetic expression, say $1 + 2 *$ 3, stands for. In this way we can use parser combinators to implement relatively easily a calculator, for instance.

The main idea of parser combinators is that we can easily build parser combinators out of smaller components following very closely the structure of a grammar. In order to implement this in an object-oriented programming language, like Scala, we need to specify an abstract class for parser combinators. This abstract class states that the function parse takes an argument of type I and returns a set of type $Set[(T, I)].$

```
abstract class Parser[I, T] {
 def parse(in: I) : Set[(T, I)]
 def parse_all(in: I) : Set[T] =
    for ((head, tail) <- parse(in); if (tail.isEmpty))
      yield head
}
```
It is the obligation in each instance (parser combinator) to supply an implementation for parse. From this function we can then "centrally" derive the function parse_all, which just filters out all pairs whose second component is not empty (that is has still some unprocessed part). The reason is that at the end of the parsing we are only interested in the results where all the input has been consumed and no unprocessed part is left over.

One of the simplest parser combinators recognises just a single character, say *c*, from the beginning of strings. Its behaviour can be described as follows:

• If the head of the input string starts with a *c*, then return the set

{(*c*, *tail of s*)*}*

where *tail of s* is the unprocessed part of the input string.

• Otherwise return the empty set *{}*.

The input type of this simple parser combinator is String and the output type is Char. This means parse returns Set[(Char, String)]. The code in Scala is as follows:

```
case class CharParser(c: Char) extends Parser[String, Char] {
 def parse(in: String) =
  if (in.head == c) Set((c, in.tail)) else Set()
}
```
You can see parse tests whether the first character of the input string in is equal to c. If yes, then it splits the string into the recognised part c and the unprocessed part in.tail. In case in does not start with c then the parser returns the empty set (in Scala Set()). Since this parser recognises characters and just returns characters as the processed part, the output type of the parser is Char.

If we want to parse a list of tokens and interested in recognising a number token, for example, we could write something like this

```
case object NumParser extends Parser[List[Token], Int] {
 def parse(ts: List[Token]) = ts match {
   case Num_token(s)::ts => Set((s.toInt, ts))
    case _ => Set ()
 }
}
```
In this parser the input is of type List[Token]. The function parse looks at the input ts and checks whether the first token is a Num_token (let us assume our lexer generated these tokens for numbers). But this parser does not just return this token (and the rest of the list), like the CharParser above, rather it extracts also the string s from the token and converts it into an integer. The hope is that the lexer did its work well and this conversion always succeeds. The consequence of this is that the output type for this parser is Int, not Token. Such a conversion would be needed if we want to implement a simple calculator program, because string-numbers need to be transformed into Int-numbers in order to do the calculations.

These simple parsers that just look at the input and do a simple transformation are often called *atomic* parser combinators. More interesting are the parser combinators that build larger parsers out of smaller component parsers. There are three such parser combinators that can be implemented generically. The *alternative parser combinator* is as follows: given two parsers, say, *p* and *q*, we apply both parsers to the input (remember parsers are functions) and combine the output (remember they are sets of pairs):

```
p(input) ∪ q(input)
```
In Scala we can implement alternative parser combinator as follows

```
class AltParser[I, T]
       (p: => Parser[I, T],
       q: => Parser[I, T]) extends Parser[I, T] {
 def parse(in: I) = p.parse(in) ++ q.parse(in)
}
```
The types of this parser combinator are again generic (we have I for the input type, and T for the output type). The alternative parser builds a new parser out of two existing parsers p and q which are given as arguments. Both parsers need to be able to process input of type I and return in parse the same output type Set[(T, I)].^{[1](#page-3-0)} The alternative parser runs the input with the first parser p (producing a set of pairs) and then runs the same input with q (producing another set of pairs). The result should be then just the union of both sets, which is the operation ++ in Scala.

The alternative parser combinator allows us to construct a parser that parses either a character a or b using the CharParser shown above. For this we can write

```
new AltParser(CharParser('a'), CharParser('b'))
```
Later on we will use Scala mechanism for introducing some more readable shorthand notation for this, like "a" | "b". Let us look in detail at what this parser combinator produces with some sample strings.

We receive in the first two cases a successful output (that is a non-empty set). In each case, either a or b is in the processed part, and cde in the unprocessed part. Clearly this parser cannot parse anything with ccde, therefore the empty set is returned.

A bit more interesting is the *sequence parser combinator*. Given two parsers, say again, *p* and *q*, we want to apply first the input to *p* producing a set of pairs; then apply *q* to all the unparsed parts in the pairs; and then combine the results. Mathematically we would write something like this for the result set of pairs:

> ${((output_1, output_2), u_2)$ \vert (*output*₁, *u*₁) ∈ *p*(input) *∧* $(output_{2}, u_{2}) \in q(u_{1})\}$

¹There is an interesting detail of Scala, namely the => in front of the types of p and q . They will prevent the evaluation of the arguments before they are used. This is often called *lazy evaluation* of the arguments. We will explain this later.

Notice that the *p* will first be run on the input, producing pairs of the form (*output*₁, u_1) where the u_1 stands for the unprocessed, or leftover, parts pf p . We want that q runs on all these unprocessed parts u_1 . Therefore these unprocessed parts are fed into the second parser *q*. The overall result of the sequence parser combinator is pairs of the form $((output_1, output_2), u_2)$. This means the unprocessed part of the sequqnce p[arser combinator is the unprocessed part the second parser *q* leaves as leftover. The processed parts of of the component parsers is a pair consisting of the outputs of *p* and *q*, namely (*output*₁, *output*₂). This behaviour can be implemented in Scala as follows:

```
class SeqParser[I, T, S]
       (p: => Parser[I, T],
        q: => Parser[I, S]) extends Parser[I, (T, S)] {
 def parse(in: I) =
   for ((output1, u1) <- p.parse(in);
         (output2, u2) <- q.parse(u1))
            yield ((output1, output2), u2)
}
```
This parser takes again as arguments two parsers, p and q. It implements parse as follows: let first run the parser p on the input producing a set of pairs (output1, u1). The u1 stands for the unprocessed parts left over by p. Let then q run on these unprocessed parts producing again a set of pairs. The output of the sequence parser combinator is then a set containing pairs where the first components are again pairs, namely what the first parser could parse together with what the second parser could parse; the second component is the unprocessed part left over after running the second parser q. Therefore the input type of the sequence parser combinator is as usual I, but the output type is

(T, S)

This means parse in the sequence parser combinator returns sets of type Set $[(T,$ S), I)]. Notice that we have essentially two output types for the sequence parser combinator (packaged in a pair), because in general *p* and *q* might produce different things (for example first we recognise a number and then a string corresponding to an operator). If any of the runs of *p* and *q* fail, that is produce the empty set, then parse will also produce the empty set.

With the shorthand notation we shall introduce later for the sequence parser combinator, we can write for example " a " \sim " b ", which is the parser combinator that first recognises the character a from a string and then b. Let us look again at three examples of how this parser combinator processes some strings:

> input strings output a b c d e *→* $\{((a, b), c, d, e)\}$ b a c d e $\rightarrow \{\}$ c c c d e *→ {}*

In the first line we have a successful parse, because the string starts with ab, which is the prefix we are looking for. But since the parsing combinator is constructed as sequence of the two simple (atomic) parsers for a and b, the result is a nested pair of the form ((a, b), cde). It is *not* a simple pair (ab, cde) as one might erroneously expect. The parser returns the empty set in the other examples, because they do not fit with what the parser is supposed to parse.

A slightly more complicated parser is ("a" | "b") ~ "c" which parses as first character either an a or b, followed by a c. This parser produces the following outputs.

Now consider the parser ("a" \sim "b") \sim "c" which parses a, b, c in sequence. This parser produces the following outputs.

```
\ninput strings\n
$$
\text{a} \times \text{b} \times \text{c} \times \text{d} \times \text{e} \rightarrow \{(((\text{a}, \text{b}), \text{c}), \text{d} \times \text{e})\}
$$
\n  
\n $\text{a} \times \text{b} \times \text{d} \times \text{e} \rightarrow \{\}$ \n  
\n $\text{b} \times \text{d} \times \text{e} \rightarrow \{\}$ \n
```

The second and third example fail, because something is "missing" in the sequence we are looking for. The first succeeds but notice how the results nest with sequences: the parsed part is a nested pair of the form $((a, b), c)$. If we nest the sequence parser differently, for example "a" \sim ("b" \sim "c"), then also our output pairs nest differently

```
\ninput strings\n
$$
\text{output}\quad \rightarrow \left\{ \left( (\text{a}, (\text{b}, \text{c})) , \text{d} \cdot \text{e} \right) \right\}\n
$$
\n
```

Two more examples: first consider the parser ("a" \sim "a") \sim "a" and the input aaaa:

input string

\n
$$
\text{output}
$$
\n
$$
\text{a} \text{a} \text{a} \text{a} \rightarrow \{(((\text{a}, \text{a}), \text{a}), \text{a})\}
$$

Notice how again the results nest deeper and deeper as pairs (the last a is in the unprocessed part). To consume everything of this string we can use the parser (("a" \sim "a") \sim "a") \sim "a". Then the output is as follows:

```
input string output
    \overline{a} a a a \rightarrow \{(((a, a), a), a), \cdots)\}
```
This is an instance where the parser consumed completely the input, meaning the unprocessed part is just the empty string. So if we called parse_all, instead of parse, we would get back the result

$\{(((a, a), a), a) \}$

where the unprocessed (empty) parts have been stripped away from the pairs; everything where the second part was not empty has been thrown away as well, because they represent ultimately-unsuccessful-parses. The main point is that the sequence parser combinator returns pairs that can nest according to the nesting of the component parsers.

Consider also carefully that constructing a parser such "a" \mid ("a" ~ "b") will result in a typing error. The intention with this parser is that we want to parse an a, or an a followed by a b. However, the first parser has as output type a single character (recall the type of CharParser), but the second parser produces a pair of characters as output. The alternative parser is required to have both component parsers to have the same type—we need to be able to build the union of two sets, which means in Scala they need to be of the same type. Since ther are not, there is a typing error in this example. We will see later how we can build this parser without the typing error.

The next parser combinator, called *semantic action*, does not actually combine smaller parsers, but applies a function to the result of a parser. It is implemented in Scala as follows

```
class FunParser[I, T, S]
         (p: => Parser[I, T],
          f: T => S) extends Parser[I, S] {
  def parse(in: I) =
    for ((head, tail) <- p.parse(in)) yield (f(head), tail)
}
```
This parser combinator takes a parser p (with input type I and output type T) as one argument but also a function f (with type $T \Rightarrow S$). The parser p produces sets of type $Set[(T, I)]$. The semantic action combinator then applies the function f to all the 'processed' parser outputs. Since this function is of type T => S, we obtain a parser with output type S. Again Scala lets us introduce some shorthand notation for this parser combinator. Therefore we will write $p \implies f$ for it.

What are semantic actions good for? Well, they allow you to transform the parsed input into datastructures you can use for further processing. A simple example would be to transform parsed characters into ASCII numbers. Suppose we define a function f (from characters to ints) and use a CharParser for parsing the character c.

```
val f = (c: Char) => c.toInt
val c = new CharParser('c')
```
We then can run the following two parsers on the input cbd:

```
c.parse("cbd")
(c ==> f).parse("cbd")
```
In the first line we obtain the expected result Set(('c', "bd")), whereas the second produces $Set((99, "bd"))-the character has been transformed into$ an ASCII number.

A slightly less contrived example is about parsing numbers (recall NumParser above). However, we want to do this here for strings. For this assume we have the following RegexParser.

```
import scala.util.matching.Regex
case class RegexParser(reg: Regex) extends Parser[String, String] {
  def parse(in: String) = reg.findPrefixMatchOf(in) match {
case None => Set()
    case Some(m) => Set((m.matched, m.after.toString))
}
}
```
This parser takes a regex as argument and splits up a string into a prefix and the rest according to this regex (reg.findPrefixMatchOf generates a match-in the successful case—and the corresponding strings can be extracted with matched and after). Using this parser we can define a NumParser for strings as follows:

```
val NumParser = RegexParser("[0-9]+".r)
```
This parser will recognise a number at the beginning of a string, for example

```
NumParser.parse("123abc")
```
produces Set((123,abc)). The problem is that 123 is still a string (the required double-quotes are not printed by Scala). We want to convert this string into the corresponding Int. We can do this as follows using a semantic action

(NumParser =**=>** (s **=>** s.toInt)).parse("123abc")

The function in the semantic action converts a string into an Int. Let us come back to semantic actions when we are going to implement actual context-free gammars.

Shorthand notation for parser combinators

Before we proceed, let us just explain the shorthand notation for parser combinators. Like for regular expressions, the shorthand notation will make our life much easier when writing actual parsers. We can define some implicits which allow us to write p | q, p \sim q and p ==> f as well as to use plain strings for specifying simple string parsers.

The idea is that this shorthand notation allows us to easily translate contextfree grammars into code. For example recall our context-free grammar for palindromes:

$$
P ::= a \cdot P \cdot a \mid b \cdot P \cdot b \mid a \mid b \mid \epsilon
$$

Each alternative in this grammar translates into an alternative parser combinator. The *·* can be translated to a sequence parser combinator. The parsers for *a*, b and ϵ can be simply written as "a", "b" and "".

How to build parsers using parser combinators?

The beauty of parser combinators is the ease with which they can be implemented and how easy it is to translate context-free grammars into code (though the grammars need to be non-left-recursive). To demonstrate this recall the grammar for palindromes from above. The first idea would be to translate it into the following code

```
lazy val Pal : Parser[String, String] =
  (("a" ~ ~ Pa1 ~ ~ ~ "a") ~ | ~ ("b" ~ ~ Pa1 ~ ~ ~ "b") ~ | "a" ~ | "b" ~ | """)
```
Unfortunately, this does not quite work yet as it produces a typing error. The reason is that the parsers "a", "b" and "" all produce strings as output type and therefore can be put into an alternative ...| "a" | "b" | "". But both "a" ~ Pal ~ "a" and "b" ~ Pal ~ "b" produce pairs of the form $(((_)$, $)$, $)$ that is how the sequence parser combinator nests results when \sim is used between two components. The solution is to use a semantic action that "flattens" these pairs and appends the corresponding strings, like

```
lazy val Pal : Parser[String, String] =
  (("a" ~ Pal ~ "a") ==> { case ((x, y), z) => x + y + z } |
("b" ~ Pal ~ "b") ==> { case ((x, y), z) => x + y + z } |
   "a" | "b" | "")
```
Now in all cases we have strings as output type for the parser variants. The semantic action

Important to note is that we must define Pal-parser as a *lazy* value.

Implementing an Interpreter