Compilers and
Formal Languages (3)

Email:

Office Hours:
Location:
Slides & Progs:

christian.urban at kcl.ac.uk
Thursdays 12 — 14

N7.07 (North Wing, Bush House)
KEATS (also homework is there)



Scala Book, Exams

@ https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf
@ homework (written exam 80%)
@ coursework (20%)

@ short survey at KEATS; to be answered until Sunday



Last Week

Last week | showed you a regular expression matcher
that works provably correct in all cases (we only started
with the proving part though)

matchessr ifandonlyif s € L(r)

by Janusz Brzozowski (1964)



The Derivative of a Rexp

def

=0

def

def

def

def

def

0

ifc =dthen1else0

dercry +dercr,

if nullable(ry)
then (dercry) - r, + dercr,
else (dercry) - r,

(dercr) - (r*)

r

derss (dercr)



dera ((a-b)+b)*

Example
Givenr = ((a-b) + b)* whatis

=

dera((a-b)+b)*

dera((a-b) +b))-r

b)
(dera(a-b)) + (derab)) - r
((deraa) - b) + (derab)) - r
( b)

(

1-b)+ (derab)) -r

(
(
(
(
((1-6)+0)-r



Input: string abc and regular expression r
Q derar
Q derb (derar)
© derc(derb (derar))



Input: string abc and regular expression r
@ derar
Q derb (derar)
© derc(derb (derar))

@ finally check whether the last regular expression can
match the empty string



Simplification

Givenr = ((a-b) +b)*,

((1-b)+0)-r

you can simplify as follows

= ((1:b) +0)-r
= (b+0)-r

= b-r



Proofs about Rexp

P holds for 0, 1 and ¢

P holds for ry 4 r, under the assumption that P already
holds for r; and r.

P holds for r - r, under the assumption that P already
holds for r; and r,.

P holds for r* under the assumption that P already holds
forr.



We proved
nullable(r) ifand onlyif [] € L(r)

by induction on the regular expression r.



We proved
nullable(r) ifand onlyif [] € L(r)

by induction on the regular expression r.

Any Questions?



Proofs about Natural
Numbers and Strings

P holds for 0 and

P holds for n 4 1 under the assumption that P already
holds for n

P holds for [| and

P holds for c :: s under the assumption that P already
holds for s



Correctness Proof
for our Matcher

@ We started from
s e L(r)

<[] € Derss (L(r))



Correctness Proof
for our Matcher

@ We started from
s e L(r)
<[] € Derss (L(r))

o if we can show Derss (L(r)) = L(derssr) we have

&[] € L(derssr)
< nullable(derssr)

def
= matchessr



We need to prove
L(dercr) = Derc (L(r))

also by induction on the regular expression r.



(Basic) Regular Expressions

ron= nothing
| empty string /" / |]
e character
| r sequence
| r1 + r alternative / choice
| r

star (zero or more)

How about ranges [a-z], ¥ and ~ r? Do they increase
the set of languages we can recognise?



Negation

Assume you have an alphabet consisting of the letters a,
b and c only. Find a (basic!) regular expression that
matches all strings except ab and ac!



Automata

A deterministic finite automaton, DFA, consists of:
an alphabet X
a set of states Qs
one of these states is the start state Q,
some states are accepting states F, and
there is transition function ¢
which takes a state as argument and a character and produces a

new state; this function might not be everywhere defined =
partial function

A(ZI QS/ QO/ F/ 5)



a a
start —{ Qg |—>{ Q; — Q4 o ab

\jb a

bCQ2_>Q3

b

@ the start state can be an accepting state
@ itis possible that there is no accepting state

@ all states might be accepting (but this does not
necessarily mean all strings are accepted)



for this automaton ¢ is the function

(QO/a) — Q (Qwa) — Q4 (Q4,a) — Q4

(Q/b) 2 Q (QUb) =2 Q (Qb) = Q™



Accepting a String

Given
A(X,Qs, Qy, F,0)
you can define
5(a.11) = q
d(a,c:s) £5(6(g,0),5)



Accepting a String
Given
A(Z, QS/ QO/ F/ 5)

you can define

Sa)%q

-~ -~

6(g,c::5) = 6(6(a,0),5)

Whether a string s is accepted by A?
(/S\(QOI 5) S F



Regular Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular expression
that recognises all its strings.



Regular Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular expression

that recognises all its strings.

not all languages are regular, e.g. a"b" is not



Regular Languages (2)

A language is regular iff there exists a regular expression
that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite
automaton that recognises all its strings.



Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA) consists
again of:

@ afinite set of states

@ some these states are the start states

@ some states are accepting states, and

@ there is transition relation

(Q1/a) — QZ
(Qa) = Q; ™



Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA) consists
again of:

@ afinite set of states

@ some these states are the start states

@ some states are accepting states, and

@ there is transition relation

(Q1/ a) — QZ

(Qa) > Q (Qi,a) = {Q,Q}



An NFA Example

a
sare —{Quf~Q)-"Q)
4,



Another Example

For the regular expression (.*)a (.{"})bc

k
Start... O~ *bc
N g ,

n

Note the star-transitions: accept any character.



Two Epsilon NFA Examples




Rexp to NFA



Caser1-r

By recursion we are given two automata:

rq 5)

start © start _>O ©
Start PRy © PRy ©
start © start —>O ©

We need to (1) change the accepting nodes of the first automaton
into non-accepting nodes, and (2) connect them via e-transitions
to the starting state of the second automaton.



Caser1-r

By recursion we are given two automata:

ri-r

start < ©
start “ o . e ©
start o ©

We need to (1) change the accepting nodes of the first automaton
into non-accepting nodes, and (2) connect them via e-transitions
to the starting state of the second automaton.



Caseri +

By recursion we are given two automata:
I

Ve

start —{ ) @

start —{ ) O

A

rp

@)
start e O
O

We can just put both automata together.




Caseri +

By recursion we are given two automata:
ri+nr

start —>O @

start —{ )

O
O
start —{ ) @)

\ O

We can just put both automata together.




Caser™

By recursion we are given an automaton for r:

start —{ ) O

start —{ ) O




Caser™

By recursion we are given an automaton for r:




Caser”™

By recursion we are given an automaton for r:

start

Why can't we just have an epsilon transition from the
accepting states to the starting state?



Subset Construction

start




Subset Construction

start




Subset Construction

a b
{} {+ {
{o} {012} {2}
{1 | {1 {}
{2} {+ {2}

start




Subset Construction

nodes a b
{} {+ {}
{o} {012} {2}
start {1} {1} {}
{2} {+ {2}
{0,1} |{o,1,2} {2}
{0,2} |{o0,1,2} {2}
{r.2} | {1} {2}
{0,1,2} |{o0,1,2} {2}




Subset Construction

start




The Result




Removing Dead States

DFA: (original) NFA:




Regexps and Automata

Thompson'’s subset
construction construction

Regexps mmslp NFAs =y DFAS



Regexps and Automata

Thompson'’s subset
construction construction

N
Regexps mmsp NFAs == DFAs A

minimisation



000

DFA Minimisation

Take all pairs (g, p) withg # p
Mark all pairs that accepting and non-accepting states

For all unmarked pairs (g, p) and all characters c test
whether

(6(q,¢),6(p,c))

are marked. If yes in at least one case, then also mark

(a,p).
Repeat last step until no change.

All unmarked pairs can be merged.



start —{ Q, 9, Q, 9 Q4 oab

\jb a

bCQ2_>Q3
b

Q

Q,

Q;

Qx| x| x|x*

Q Q Q Q



a a
start —{ Qg ——{ Q; — Q4 o ab

N

bCQ2—>Q3

start —{ Qg
N
) b
b

minimal automaton

Q| x

Q |*

Q;| %

*

Qq x| *

*

*

QQiQQ;

ab

0

" A a
Qi3 —{ Q




Alternatives

@ exchange initial / accepting states



Alternativ%s
a,

start

@ exchange initial / accepting states

@ reverse all edges



Alternativ%s
al

start

@ exchange initial / accepting states
@ reverse all edges
@ subset construction = DFA



Alternativ%s
a,

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states



Alternativ%s
a,

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more



Alternativ%s
a,

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more = minimal DFA



Regexps and Automata

Thompson’s subset
construction construction

Regexps 9 NFAs é DFAs é mli)nFiAr:r;al

minimisation



Regexps and Automata

Thompson’s subset
construction construction

Regexw)lzAS é mli)n;'orzal

minimisation



DFA to Rexp

a
o — @D B
b b



a
@S
b

b



a

— @D D

{) NG
b b

You know how to solve since school days, no?

Q = 2Q +3Q; +4Q,
Q =2Q +3Q +1Q,
Q = 1Q+5Q; +2Q,



start



a
o —@0E) @

QO - Qob+Q1b+Q2b+1
Q = Qpa
Q = Qa+Qa



a
o —@0E) @

Qy = Qb+Qb+Q,b+1
Q = Qpa
Q = Qa+Qa

Arden’s Lemma:

Ifg =qr+s then g =sr"



Regexps and Automata

Thompson’s subset
construction construction

Regexw)lzAS é mli)n;'orzal

minimisation



Regular Languages (3)

A language is regular iff there exists a regular expression
that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite
automaton that recognises all its strings.



Regular Languages (3)

A language is regular iff there exists a regular expression
that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite
automaton that recognises all its strings.

Why is every finite set of strings a regular language?



Given the function

rev(0) =0
rev(1) = 1
def
rev(c) =c
rev(ry +r,) = rev(ry) + rev(r,)
def
rev(ry - ry) =rev(ry) - rev(ry)
rev(r*) = rev(r)*
and the set
RevA = {s77|s € A}
prove whether

L(rev(r)) = Rev(L(r))



