
Handout 4 (Sulzmann & Lu Algorithm)
So far our algorithm based on derivatives was only able to say yes or no de-
pending on whether a string was matched by regular expression or not. Often
a more interesting question is to find out how a regular expression matched a
string? Answering this question will help us with the problem we are after,
namely tokenising an input string, that is spliĴing it up into its “word” com-
ponents. The algorithm we will be looking at was designed by Sulzmann &
Lu in a rather recent paper. A link to it is provided on KEATS, in case you are
interested.1

In order to give an answer for how a regular expression matched a string,
Sulzmann and Lu introduce values. A value will be the output of the algorithm
whenever the regular expression matches the string. If not, an error will be
raised. Since the first phase of the algorithm is identical to the derivative based
matcher from the first coursework, the function nullable will be used to de-
cide whether as string is matched by a regular expression. If nullable says yes,
then values are constructed that reflect how the regular expressionmatched the
string. The definitions for regular expressions r and values v is shown below:

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Le f t(v)
| Right(v)
| [v1, . . . vn]

As you can see there is a very strong correspondence between regular expres-
sions and values. There is no value for the ∅ regular expression (since it does
not match any string). Then there is exactly one value corresponding to each
regular expression. with the exception of r1 + r2 where there are two values
Le f t(v) and Right(v) corresponding to the two alternatives. Note that r∗ is as-
sociated with a list of values, one for each copy of r that was needed to match
the string. This mean we might also return the empty list [], if no copy was
needed.

Graphically the algorithm can be represneted by the picture in Figure 1
where the path involving der/nullable is the first phase of the algorithm and
mkeps/inj the second phase. This picture shows the steps required when a reg-
ular expression, say r1, matches the string abc. We first build the three deriva-
tives (according to a, b and c). We then use nullable to find out whether the
resulting regular expression canmatch the empty string. If yes we call the func-
tion mkeps.

The mkeps function calculates a value for how a regular expression could
have matched the empty string. Its definition is as follows:

1In my humble opinion this is an interesting instance of the research literature: it contains a
very neat idea, but its presentation is rather sloppy. In earlier versions of their paper, students and
I found several rather annoying typos in their examples and definitions.
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Figure 1: The two phases of the algorithm by Sulzmann & Lu.

mkeps(ϵ) def
= Empty

mkeps(r1 + r2)
def
= if nullable(r1)

then Le f t(mkeps(r1))
else Right(mkeps(r2))

mkeps(r1 · r2)
def
= Seq(mkeps(r1), mkeps(r2))

mkeps(r∗) def
= []

There are no cases for ϵ and c, since these regular expression cannot match the
empty string. Note that in case of alternatives we give preference to the regular
expression on the left-hand side. This will become important later on.

The algorithm is organised recursively such that it will calculate a value
for how the derivative regular expression has matched a string where the first
character has been chopped off. Now we need a function that reverses this
“chopping off” for values. The corresponding function is called inj for injection.
This function takes three arguments: the first one is a regular expression for
which we want to calculate the value, the second is the character we want to
inject and the third argument is the value where we will inject the character.
The result of this function is a new value. The definition of inj is as follows:

inj (c) c Empty def
= Char c

inj (r1 + r2) c Le f t(v) def
= Le f t(inj r1 c v)

inj (r1 + r2) c Right(v) def
= Right(inj r2 c v)

inj (r1 · r2) c Seq(v1, v2)
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Le f t(Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Right(v) def
= Seq(mkeps(r1), inj r2 c v)

inj (r∗) c Seq(v, vs) def
= inj r c v :: vs

This definition is by recursion on the regular expression and by analysing the
shape of the values. Therefore there are, for example, three cases for sequnece
regular expressions. The last clause returns a list where the first element is
inj r c v and the other elements are vs.
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To understand what is going on, it might be best to do some example cal-
culations and compare with Figure 1. For this note that we have not yet dealt
with the need of simplifying regular expreesions (this will be a topic on its own
later). Suppose the regular expression is a · (b · c) and the input string is abc.
The derivatives are as follows:

r1: a · (b · c)
r2: ϵ · (b · c)
r3: (∅ · (b · c)) + (ϵ · c)
r4: (∅ · (b · c)) + ((∅ · c) + ϵ)

According to the simple algorithm. wewould test whether r4 is nullable, which
it is. This means we can use the function mkeps to calculate a value for how r4
was able to match the empty string. Remember that this function gives prefer-
ence for alternatives on the left-hand side. However there is only ϵ on the very
right-hand side of r4 that matches the empty string. Therefore mkeps returns
the value

v4 : Right(Right(Empty))

Thepoint is that from this valuewe candirectly read offwhichpart of r4 matched
the empty string. Next we have to “inject” the last character, that is c in the run-
ning example, into this value in order to calculate how r3 could have matched
the string c. According to the definition of inj we obtain

v3 : Right(Seq(Empty, Char(c)))

This is the correct result, because r3 needs to use the right-hand alternative, and
then ϵ needs to match the empty string and c needs to match c. Next we need
to inject back the leĴer b into v3. This gives

v2 : Seq(Empty, Seq(Char(b), Char(c)))

Finally we need to inject back the leĴer a into v2 giving the final result

v1 : Seq(Char(a), Seq(Char(b), Char(c)))

This now corresponds to how the regular expression a · (b · c) matched the
string abc. This is the expected result. So at least in this case the algorithm
seems to calculate what it is supposed to.

There are a few auxiliary function that are of interest in analysing this algo-
rithm. One is called flaĴen, wriĴen |_|, which extracts the string “underlying”
a value. It is defined as

|Empty| def
= []

|Char(c)| def
= [c]

|Le f t(v)| def
= |v|

|Right(v)| def
= |v|

|Seq(v1, v2)|
def
= |v1|@ |v2|

|[v1, . . . , vn]|
def
= |v1|@ . . . @ |vn|
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UsingflaĴenwe can seewhat is the string behind the values calculated bymkeps
and inj in our running example:

v4: []
v3: c
v2: bc
v1: abc

This indicates that inj indeed is injecting, or adding, back a character into the
value.

Simplification

Generally the matching algorithms based on derivatives do poorly unless the
regular expressions are simplified after each derivatives step.
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Algorithm by Sulzmann, Lexing
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