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An Efficient Regular
Expression Matcher
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In the handouts is a similar graph with (¢*)* - 4 for Java.



Languages

o A Language is a set of strings, for example

{1], bello, foobar,a, abc}

o Concatenation of strings and languages

foo @ bar = foobar
A@B = {5@s, | 5, € ANs, € B}

For example A = {foo,bar}, B = {a,b}

A @B = {fooa, foob, bara, barb}



The Power Operation

e The Power of a language:
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Homework Question

o Say A = {la], [¢],[c], [d]}.

How many strings are in A*?



Homework Question

o Say A = {[a], [4], [c], [4]}.

How many strings are in A*?

What if A = {[a], 8], [c], [|};

how many strings are then in 4+?



The Star Operation

e The Star of a language:

def

This expands to

A°UAUATUAIUAYU. ..

{[fudud@d U A@A@A U ARA@QA@AU...



Semantic Derivative

o The Semantic Derivative of a language
wrt to a character c:

DercA = {s|cuse A}

For A = {foo, bar, frak} then
DerfA = {oo,rak}
Derb A = {ar}
DeraA = {}



Semantic Derivative

o The Semantic Derivative of a language
wrt to a character c:

DercA = {s|cuse A}

For A = {foo, bar, frak} then

DerfA = {oo,rak}
Derb A = {ar}
DeraA = {}

We can extend this definition to strings

DerssA = {5’ | s@s € A}



Regular Expressions

Their inductive definition:

S =@

ry 71,
rt+r,

null

empty string / > / ||
character

sequence
alternative / choice
star (zero or more)
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abstract class Rexp

object ZERO extends Rexp

object ONE ext
class CHAR(c:
class ALT(r1:
class SEQ(ri:
class STAR(r:

ends Rexp

Char) extends Rexp

Rexp, r2: Rexp) extends Rexp
Rexp, r2: Rexp) extends Rexp
Rexp) extends Rexp

r

= 0
| x
| ¢
|
|
|

null

empty string / > / ||
character

sequence
alternative / choice
star (zero or more)




The Meaning of a
Regular Expression

L(o) £ {}

Lx) £ {[I}

L(c) £ {[}
L(r,+r,) o L(r,) UL(r,)
L(ry-r,) o L(r,)@L(r,)

L(r) £ (L(r)*

L is a function from
regular expressions to sets
of strings

L : Rexp = Set|[String]



What is L(a*)?



When Are Two Regular
Expressions Equivalent?



Concrete Equivalences

(a+b)+c = a+ (b+0)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)



Concrete Equivalences

(a+b)+c = a+ (b+0)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)
a-a % a
a+b-c) £ (a+b) (a+o)
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Simplification Rules
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The Specification
for Matching

A regular expression 7 matches a string s
if and only if

s € L(r)



time in secs

(@’ - g1} and (a)* - b

time in secs

o
5§ 10 1§ 20 25 30 7 § 10 15 20 2§ 30 "



Evil Regular Expressions

o Regular expression Denial of Service (ReDoS)

o Evil regular expressions

o (£} . 4ln}
° (d*)*

o ([a-2]")"
o (¢ta-a)
o (a+a?)*



A Matching Algorithm

...whether a regular expression can match the
empty string:

nullable(o) < false

nullable(x)  true

(
(
nullable(c) < false
( def
(
(

nullable(r, + r,) = nullable(r,) V nullable(r,)
nullable(r, - r,) < nullable(r,) N nullable(r,)

nullable(r*)  true



The Derivative of a Rexp

If » matches the string c::s, what is a
regular expression that matches just s?

der cr gives the answer, Brzozowski 1964



The Derivative of a Rexp

derc (0)

def

def

=0

def .

= if c = d then 1 else 0

def

dercr, + dercr,

i mullable(r,)
then (dercr,) -r, +dercr,
else (dercr,) -7,

2 (dercr) - (r*)



The Derivative of a Rexp

derc (o)

def
=0
def

=0
def .
= if c = d then 1 else 0

def

dercr, +dercr,

i mullable(r,)

then (dercr,) -r, +dercr,
else (dercr,) -7,

2 (dercr) - (r*)

def
=r

X derss (dercr)



Examples

Given r & ((@-6) +6)" what is

derar =7
derbr =7
dercr =7



The Algorithm

matchesrs < nullable(dersrs)



An Example

Does r, match abc?

Step 1:
Step 2:
Step 3:
Step 4:

Output:

build derivative of z and r, (r, = derar,)
build derivative of b and , (r; = derbr,)
build derivative of cand r;  (r, = dercr;)

the string is exhausted: (nullable(r,))
test whether 7, can recognise

the empty string

result of the test

=> true or false



The Idea of the Algorithm

If we want to recognise the string #bc with regular
expression 7; then

@ Dera(L(ry))



The Idea of the Algorithm

If we want to recognise the string #bc with regular
expression 7; then

Q@ Dera(L(r,))
@ Derb (Dera (L(ry)))



The Idea of the Algorithm

If we want to recognise the string @bc with regular
expression 7; then

@ Dera(L(ry))
@ Derb (Dera (L(ry)))
@ Derc(Derb (Dera(L(ry))))

Q finally we test whether the empty string is in this
set; same for Dersabc (L(r,)).

The matching algorithm works similarly; just over
regular expressions instead of sets.
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A Problem

We represented the “n-times” 21"} as a sequence
regular expression:

I: a
a-a
3 a-a-a

13: 4-d-a-d-ada-ada-d-a-d-a-d-a-a
20:

This problem is aggravated with &’ being
represented as @ + I.



Solving the Problem

What happens if we extend our regular
expressions

r

?
r

A
|

What is their meaning?
What are the cases for nullable and der?
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Examples

Recall the example of r = ((« - 4) 4 4)* with
derar = ((x-b)+0)-r
derbr = ((0-6)+1)-r
dercr=((0-6)+0)-r

What are these regular expressions equivalent to?
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What is good about this Alg.

e extends to most regular expressions, for example
~r
e is easy to implement in a functional language

o the algorithm is already quite old; there is still
work to be done to use it as a tokenizer (that is
brand new work)

@ we can prove its correctness...



Proofs about Rexps

Remember their inductive definition:

r

S =@

ryr,
ret+r,

r*

If we want to prove something, say a property
P(r), for all regular expressions 7 then ...



Proofs about Rexp (2)

e P holds for 0, 1 and ¢

e P holds for r, + r, under the assumption that P
already holds for 7, and 7.

e P holds for 7, - r, under the assumption that P
already holds for 7, and 7.

@ P holds for * under the assumption that P
already holds for 7.



Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [| € L(r)



Proofs about Rexp (4)

rev(o) < o
def

rev(I) = 1
def

rev(c) = ¢

rev(ri+1,) = rev(ry) + rev(r,)
def
rev(r,-ry) = rev(r,) - rev(r;)
rev(r) = rev(r)*

We can prove
L(rev(r)) = {s"|s € L(r)}

by induction on 7.



Correctness Proof
for our Matcher

o We started from
s€L(r)
&[] € Derss (L(r))



Correctness Proof
for our Matcher

o We started from
s€L(r)
< [| € Derss (L(r))
o if we can show Derss (L(r)) = L(derssr) we have
< || € L(derssr)
< nullable(derssr)

def
= matchessr



Proofs about Rexp (5)

Let Derc A be the set defined as
DercA = {s|cuse A}
We can prove
L(dercr) = Derc (L(r))

by induction on 7.



Proofs about Strings

If we want to prove something, say a property
P(s), for all strings s then ...
e P holds for the empty string, and

@ P holds for the string c::5s under the assumption
that P already holds for s



Proofs about Strings (2)

We can then prove
Derss (L(r)) = L(derssr)
We can finally prove

matchessr if and only if s € L(r)



