Compilers and
Formal Languages (2)

Email: christian.urban at kcl.ac.uk
Office: Sr1.27 (st floor Strand Building)
Slides: KEATS

An Efficient Regular
Expression Matcher

WRUEAL i
Graphs: " and strings ¢. . .a

n

30 |
%2) %)
3 g 5|
(%]
o o 2071
g g
o E 5
5 £+
© M—’ n
§ 10 15 20 2§ 30 7 O 4,000 § 500 12,000

In the handouts is a similar graph with (¢*)* - 4 for Java.

Languages

o A Language is a set of strings, for example

{1], bello, foobar,a, abc}

o Concatenation of strings and languages

foo @ bar = foobar
A@B = {5@s, | 5, € ANs, € B}

For example A = {foo,bar}, B = {a,b}

A @B = {fooa, foob, bara, barb}

The Power Operation

e The Power of a language:

40 H [

An+1 d:ef A@A”

For example
A*
A I
A (e}

A@A@A@A

{1}

i1
AN

Homework Question

o Say A = {la], [¢],[c], [d]}.

How many strings are in A*?

Homework Question

o Say A = {[a], [4], [c], [4]}.

How many strings are in A*?

What if A = {[a], 8], [c], [|};

how many strings are then in 4+?

The Star Operation

e The Star of a language:

def

This expands to

A°UAUATUAIUAYU. ..

{[fudud@d U A@A@A U ARA@QA@AU...

Semantic Derivative

o The Semantic Derivative of a language
wrt to a character c:

DercA = {s|cuse A}

For A = {foo, bar, frak} then
DerfA = {oo,rak}
Derb A = {ar}
DeraA = {}

Semantic Derivative

o The Semantic Derivative of a language
wrt to a character c:

DercA = {s|cuse A}

For A = {foo, bar, frak} then

DerfA = {oo,rak}
Derb A = {ar}
DeraA = {}

We can extend this definition to strings

DerssA = {5’ | s@s € A}

Regular Expressions

Their inductive definition:

S =@

ry 71,
rt+r,

null

empty string / > / ||
character

sequence
alternative / choice
star (zero or more)

case
Th case
case
case
case
case

abstract class Rexp

object ZERO extends Rexp

object ONE ext
class CHAR(c:
class ALT(r1:
class SEQ(ri:
class STAR(r:

ends Rexp

Char) extends Rexp

Rexp, r2: Rexp) extends Rexp
Rexp, r2: Rexp) extends Rexp
Rexp) extends Rexp

r

= 0
| x
| ¢
|
|
|

null

empty string / > / ||
character

sequence
alternative / choice
star (zero or more)

The Meaning of a
Regular Expression

L(o) £ {}

Lx) £ {[I}

L(c) £ {[}
L(r,+r,) o L(r,) UL(r,)
L(ry-r,) o L(r,)@L(r,)

L(r) £ (L(r)*

L is a function from
regular expressions to sets
of strings

L : Rexp = Set|[String]

What is L(a*)?

When Are Two Regular
Expressions Equivalent?

Concrete Equivalences

(a+b)+c = a+ (b+0)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)

Concrete Equivalences

(a+b)+c = a+ (b+0)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)
a-a % a
a+b-c) £ (a+b) (a+o)

Corner Cases

*
NN O = Q

RL S ST 1S
.0 |-_|.| I*I *0

AN

Simplification Rules

r+o
o—+r
r-x
) R4
r-o
o-r
r+r

11T et e | 1
2 -N-T R

The Specification
for Matching

A regular expression 7 matches a string s
if and only if

s € L(r)

time in secs

(@’ - g1} and (a)* - b

time in secs

o
5§ 10 1§ 20 25 30 7 § 10 15 20 2§ 30 "

Evil Regular Expressions

o Regular expression Denial of Service (ReDoS)

o Evil regular expressions

o (£} . 4ln}
° (d*)*

o ([a-2]")"
o (¢ta-a)
o (a+a?)*

A Matching Algorithm

...whether a regular expression can match the
empty string:

nullable(o) < false

nullable(x) true

(
(
nullable(c) < false
(def
(
(

nullable(r, + r,) = nullable(r,) V nullable(r,)
nullable(r, - r,) < nullable(r,) N nullable(r,)

nullable(r*) true

The Derivative of a Rexp

If » matches the string c::s, what is a
regular expression that matches just s?

der cr gives the answer, Brzozowski 1964

The Derivative of a Rexp

derc (0)

def

def

=0

def .

= if c = d then 1 else 0

def

dercr, + dercr,

i mullable(r,)
then (dercr,) -r, +dercr,
else (dercr,) -7,

2 (dercr) - (r*)

The Derivative of a Rexp

derc (o)

def
=0
def

=0
def .
= if c = d then 1 else 0

def

dercr, +dercr,

i mullable(r,)

then (dercr,) -r, +dercr,
else (dercr,) -7,

2 (dercr) - (r*)

def
=r

X derss (dercr)

Examples

Given r & ((@-6) +6)" what is

derar =7
derbr =7
dercr =7

The Algorithm

matchesrs < nullable(dersrs)

An Example

Does r, match abc?

Step 1:
Step 2:
Step 3:
Step 4:

Output:

build derivative of z and r, (r, = derar,)
build derivative of b and , (r; = derbr,)
build derivative of cand r; (r, = dercr;)

the string is exhausted: (nullable(r,))
test whether 7, can recognise

the empty string

result of the test

=> true or false

The Idea of the Algorithm

If we want to recognise the string #bc with regular
expression 7; then

@ Dera(L(ry))

The Idea of the Algorithm

If we want to recognise the string #bc with regular
expression 7; then

Q@ Dera(L(r,))
@ Derb (Dera (L(ry)))

The Idea of the Algorithm

If we want to recognise the string @bc with regular
expression 7; then

@ Dera(L(ry))
@ Derb (Dera (L(ry)))
@ Derc(Derb (Dera(L(ry))))

Q finally we test whether the empty string is in this
set; same for Dersabc (L(r,)).

The matching algorithm works similarly; just over
regular expressions instead of sets.

time in secs

Oops...(a "} - g1}

DAL

—o-Python
—> Ruby
——Scala V1

AN
I0 1§ 20 2§ 307

A Problem

We represented the “n-times” 21"} as a sequence
regular expression:

I: a
a-a
3 a-a-a

13: 4-d-a-d-ada-ada-d-a-d-a-d-a-a
20:

This problem is aggravated with &’ being
represented as @ + I.

Solving the Problem

What happens if we extend our regular
expressions

r

?
r

A
|

What is their meaning?
What are the cases for nullable and der?

time in secs

30 |
25 |
20 |
1

IO |

%

I5

ratamntd;

——Python
~o Ruby
——Scala V1

Scala V2

i

200 400 oo 8oo Looo 7

Examples

Recall the example of r = ((« - 4) 4 4)* with
derar = ((x-b)+0)-r
derbr = ((0-6)+1)-r
dercr=((0-6)+0)-r

What are these regular expressions equivalent to?

time in secs

30 |
25 +
20 ¢
15 +
I0 ¢

o

ratamntd;

Scala V2
—o-Scala V3

SM
O o . : ;

3,000 (000 9,000 12,000

n

time in secs

IO +

(a*) -

Scala V3

n

What is good about this Alg.

e extends to most regular expressions, for example
~r
e is easy to implement in a functional language

o the algorithm is already quite old; there is still
work to be done to use it as a tokenizer (that is
brand new work)

@ we can prove its correctness...

Proofs about Rexps

Remember their inductive definition:

r

S =@

ryr,
ret+r,

r*

If we want to prove something, say a property
P(r), for all regular expressions 7 then ...

Proofs about Rexp (2)

e P holds for 0, 1 and ¢

e P holds for r, + r, under the assumption that P
already holds for 7, and 7.

e P holds for 7, - r, under the assumption that P
already holds for 7, and 7.

@ P holds for * under the assumption that P
already holds for 7.

Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [| € L(r)

Proofs about Rexp (4)

rev(o) < o
def

rev(I) = 1
def

rev(c) = ¢

rev(ri+1,) = rev(ry) + rev(r,)
def
rev(r,-ry) = rev(r,) - rev(r;)
rev(r) = rev(r)*

We can prove
L(rev(r)) = {s"|s € L(r)}

by induction on 7.

Correctness Proof
for our Matcher

o We started from
s€L(r)
&[] € Derss (L(r))

Correctness Proof
for our Matcher

o We started from
s€L(r)
< [| € Derss (L(r))
o if we can show Derss (L(r)) = L(derssr) we have
< || € L(derssr)
< nullable(derssr)

def
= matchessr

Proofs about Rexp (5)

Let Derc A be the set defined as
DercA = {s|cuse A}
We can prove
L(dercr) = Derc (L(r))

by induction on 7.

Proofs about Strings

If we want to prove something, say a property
P(s), for all strings s then ...
e P holds for the empty string, and

@ P holds for the string c::5s under the assumption
that P already holds for s

Proofs about Strings (2)

We can then prove
Derss (L(r)) = L(derssr)
We can finally prove

matchessr if and only if s € L(r)

