Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk Slides & Progs: KEATS (also homework is there)

Let's Implement an Efficient Regular Expression Matcher

In the handouts is a similar graph for $(a^*)^* \cdot b$ and Java 8, JavaScript and Python.

(Basic) Regular Expressions

Their inductive definition:

r ::= **0** nothing *|* **1** empty string / "" / [] *| c* character *| r*¹ + *r*² alternative / choice *| r*¹ *· r*² sequence star (zero or more)

When Are Two Regular Expressions Equivalent?

Two regular expressions *r*¹ and *r*² are **equivalent** provided: $r_1 \equiv r_2 \stackrel{\text{def}}{=} L(r_1) = L(r_2)$

Some Concrete Equivalences

$$
(a + b) + c \equiv a + (b + c)
$$

\n
$$
a + a \equiv a
$$

\n
$$
a + b \equiv b + a
$$

\n
$$
(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)
$$

\n
$$
c \cdot (a + b) \equiv (c \cdot a) + (c \cdot b)
$$

Some Concrete Equivalences

$$
(a + b) + c \equiv a + (b + c)
$$

\n
$$
a + a \equiv a
$$

\n
$$
a + b \equiv b + a
$$

\n
$$
(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)
$$

\n
$$
c \cdot (a + b) \equiv (c \cdot a) + (c \cdot b)
$$

\n
$$
a \cdot a \not\equiv a
$$

\n
$$
a + (b \cdot c) \not\equiv (a + b) \cdot (a + c)
$$

Some Corner Cases

$$
a \cdot 0 \neq a
$$

\n
$$
a + 1 \neq a
$$

\n
$$
1 \equiv 0^*
$$

\n
$$
1^* \equiv 1
$$

\n
$$
0^* \neq 0
$$

Some Simplification Rules

 $r + 0 \equiv r$ $0 + r \equiv r$ $r \cdot 1 \equiv r$ $1 \cdot r \equiv r$ $r \cdot 0 \equiv 0$ $0 \cdot r \equiv 0$ $r + r \equiv r$

Simplification Example

 $((1 \cdot b) + 0) \cdot r \Rightarrow ((1 \cdot b) + 0) \cdot r$ $=$ $(b+0) \cdot r$ $=$ $b \cdot r$

Simplification Example

 $((\mathbf{0} \cdot \mathbf{b}) + \mathbf{0}) \cdot \mathbf{r} \Rightarrow ((\mathbf{0} \cdot \mathbf{b}) + \mathbf{0}) \cdot \mathbf{r}$ $=$ $(0+0) \cdot r$ $= 0 \cdot r$ = **0**

Semantic Derivative

The **Semantic Derivative** of a language w.r.t. to a character *c*:

Der c A $\stackrel{\text{def}}{=}$ $\{s \mid c::s \in A\}$

For $A = \{$ *foo, bar, frak* $\}$ then $Der fA = \{oo, rak\}$ $Der bA = \{ar\}$ *Der a A* = $\{ \}$

Semantic Derivative

The **Semantic Derivative** of a language w.r.t. to a character *c*:

Der $c A \stackrel{\text{def}}{=} \{s \mid c : s \in A\}$

For $A = \{$ *foo, bar, frak* $\}$ then $Der fA = \{oo, rak\}$ $Der bA = \{ar\}$ *Der a A* = $\{ \}$

We can extend this definition to strings

 $Ders$ *s* $A = \{s' \mid s \circledcirc s' \in A\}$

The Specification for Matching

…and the point of the this lecture is to decide this problem as fast as possible (unlike Python, Ruby, Java etc)

Brzozowski's Algorithm (1)

…whether a regular expression can match the empty string:

nullable(**0**) $\stackrel{\text{def}}{=}$ *false* $\mathsf{nullable}(1) \qquad \overset{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{true}$ $\mathsf{nullable}(c) \qquad \overset{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{false}$ $\mathsf{nullable}(r_1 + r_2) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{nullable}(r_1) \vee \mathsf{nullable}(r_2)$ $\text{nullable}(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{nullable}(r_1) \wedge \text{nullable}(r_2)$ *nullable*(*r ∗*) $\stackrel{\text{def}}{=}$ *true*

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der c r gives the answer, Brzozowski 1964

The Derivative of a Rexp

der c(**0**) $\stackrel{\text{def}}{=} 0$ $\textit{der c}$ (1) $\qquad \stackrel{\text{def}}{=}$ **0** $\det c(d)$ $\stackrel{\text{def}}{=}$ if $c = d$ then 1 else 0 $\frac{d}{dr}$ *der c* ($r_1 + r_2$) $\stackrel{\text{def}}{=}$ *der c* $r_1 +$ *der c* r_2 $\text{der } c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } \text{nullable}(r_1)$ then $(\text{der } cr_1) \cdot r_2 + \text{der } cr_2$ else $(\text{der } cr_1) \cdot r_2$ $\det^{\text{def}}(e^{i\theta}) = \det^{\text{def}}(e^{i\theta}) \cdot (r^*)$

The Derivative of a Rexp

der c(**0**) $\stackrel{\text{def}}{=} 0$ $\textit{der c}$ (1) $\qquad \stackrel{\text{def}}{=}$ **0** $\det c(d)$ $\stackrel{\text{def}}{=}$ if $c = d$ then 1 else 0 $\frac{d}{dr}$ *der c* ($r_1 + r_2$) $\stackrel{\text{def}}{=}$ *der c* $r_1 +$ *der c* r_2 $\text{der } c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } \text{nullable}(r_1)$ then $(\text{der } cr_1) \cdot r_2 + \text{der } cr_2$ else $(\text{der } cr_1) \cdot r_2$ $\det^{\text{def}}(e^{i\theta}) = \det^{\text{def}}(e^{i\theta}) \cdot (r^*)$ *ders* [] *r* $\stackrel{\text{def}}{=} r$ $ders(c::s)$ *r* $\stackrel{\text{def}}{=}$ *ders s* (*der c r*)

Examples

Given
$$
r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*
$$
 what is
\n
$$
der \, ar = ?
$$
\n
$$
der \, br = ?
$$
\n
$$
der \, cr = ?
$$

 $\left((a \cdot b) + b \right)^* \Rightarrow \text{ } \textit{d} \textit{e} \textit{r} \textit{a} \left((a \cdot b) + b \right)^*$ $=$ $(\text{der } a ((a \cdot b) + b)) \cdot r$ $=$ $((\text{der } a (a \cdot b)) + (\text{der } a b)) \cdot r$ $=$ $(((\text{der } a \cdot a) \cdot b) + (\text{der } a \cdot b)) \cdot r$ $=$ $((1 \cdot b) + (derab)) \cdot r$ $=$ $((1 \cdot b) + 0) \cdot r$

The Brzozowski Algorithm

$$
matcher\, r\, s \stackrel{\text{def}}{=} \, nullable (ders\, s\, r)
$$

Brzozowski: An Example

Does r_1 match *abc*?

- Step 1: build derivative of *a* and r_1 $(r_2 = \text{der } a r_1)$
- Step 2: build derivative of *b* and r_2 $(r_3 = \text{der } b r_2)$
- Step 3: build derivative of *c* and r_3 $(r_4 = \text{der } cr_3)$
- Step 4: the string is exhausted: $(n \text{ullable}(r_4))$ test whether r_4 can recognise the empty string
- Output: result of the test *⇒ true* or *false*

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

1 Der a $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

1 *Der a* $(L(r_1))$ 2 *Der b* $(Dera(L(r_1)))$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

- **1** *Der a* $(L(r_1))$
- 2 *Der b* $(Dera(L(r_1)))$
- \bigcirc *Der c*(*Der b* (*Der a* (*L*(*r*₁))))
- finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.

The Idea with Derivatives

Input: string *abc* and regular expression *r*

- ¹ *der a r*
- ² *der b* (*der a r*)
- ³ *der c*(*der b* (*der a r*))

The Idea with Derivatives

Input: string *abc* and regular expression *r*

- ¹ *der a r*
- ² *der b* (*der a r*)
- ³ *der c*(*der b* (*der a r*))
- **4** finally check whether the last regular expression can match the empty string

A Problem

We represented the "n-times" *a {n}* as a sequence regular expression:

```
0: 1
  1: a
 2: a \cdot a3: a \cdot a \cdot a…
13: a \cdot a…
20:
```
This problem is aggravated with *a* ? being represented as $a + 1$.

Solving the Problem

What happens if we extend our regular expressions with explicit constructors

What is their meaning? What are the cases for *nullable* and *der*?

Brzozowski: *a* **?***{n} · a {n}*

Examples

Recall the example of $r \stackrel{\text{\tiny def}}{=} ((a \cdot b) + b)^*$ with

$$
der ar = ((1 \cdot b) + 0) \cdot r
$$

\n
$$
der br = ((0 \cdot b) + 1) \cdot r
$$

\n
$$
der cr = ((0 \cdot b) + 0) \cdot r
$$

What are these regular expressions equivalent to?

Simplification Rules

$$
r + 0 \Rightarrow r
$$

\n
$$
0 + r \Rightarrow r
$$

\n
$$
r \cdot 1 \Rightarrow r
$$

\n
$$
1 \cdot r \Rightarrow r
$$

\n
$$
r \cdot 0 \Rightarrow 0
$$

\n
$$
0 \cdot r \Rightarrow 0
$$

\n
$$
r + r \Rightarrow r
$$

```
def ders(s: List[Char], r: Rexp) : Rexp = s match {
  case Nil => r
  case c::s => ders(s, simp(der(c, r)))
}
```

```
def simp(r: Rexp) : Rexp = r match {
 case ALT(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, r2s) => r2s
      case (r1s, ZERO) => r1s
      case (r1s, r2s) =>
        if (r1s == r2s) r1s else ALT(r1s, r2s)
    }
  }
  case SEQ(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, _) => ZERO
      case (_, ZERO) => ZERO
      case (ONE, r2s) => r2s
      case (r1s, ONE) => r1s
      case (r1s, r2s) => SEQ(r1s, r2s)
    }
  }
  case r => r
}
```


Another Example (*a ∗***)** *[∗] · b*

Regex: (*a ∗*) *∗ · b* Strings of the form *a* . . . *a n*

Same Example in Java 9+

Regex: (*a ∗*) *∗ · b* Strings of the form $[a \dots a]$ *n*

Regex: (*a ∗*) *∗ · b* Strings of the form $a \dots a$ *n*

What is good about this Alg.

- extends to most regular expressions, for example *∼ r* (next slide)
- \bullet is easy to implement in a functional language (slide after)
- \bullet the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is relatively new work)
- we can prove its correctness…(several slides later) \bullet

Negation of Regular Expr's

- *∼ r* (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=}$ *UNIV* $-L(r)$
- $\mathsf{nullable}(\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{not}(\mathsf{nullable}(r))$
- $\mathit{der} \, c \, (\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \, \sim \, (\mathit{der} \, c \, r)$

Negation of Regular Expr's

- *∼ r* (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=}$ *UNIV* $-L(r)$
- $\mathsf{nullable}(\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{not}(\mathsf{nullable}(r))$
- $\mathit{der} \, c \, (\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \, \sim \, (\mathit{der} \, c \, r)$

Used often for recognising comments:

$$
\mathsf{y} \cdot * \cdot (\mathsf{y} \cdot ([a-z]^* \cdot * \cdot \mathsf{y} \cdot [a-z]^*)) \cdot * \cdot \mathsf{y}
$$

Coursework 1

- Submission on Friday 16 October @ 18:00
- source code needs to be submitted as well \bullet
- you can re-use my Scala code from KEATS and use any programming language you like
- https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

Proofs about Rexps

Remember their inductive definition:

$$
r ::= 0
$$

\n
$$
\begin{array}{c}\n1 \\
c \\
r_1 \cdot r_2 \\
r_1 + r_2 \\
r^* \\
\end{array}
$$

If we want to prove something, say a property $P(r)$, for all regular expressions *r* then …

Proofs about Rexp (2)

- *P* holds for **0**, **1** and c
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r [∗]* under the assumption that *P* already holds for *r*.

Proofs about Rexp (3)

Assume $P(r)$ is the property:

nullable(*r*) if and only if $[$ $] \in L(r)$

Proofs about Rexp (4)

$$
rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}
$$

\n
$$
rev(\mathbf{1}) \stackrel{\text{def}}{=} \mathbf{1}
$$

\n
$$
rev(c) \stackrel{\text{def}}{=} c
$$

\n
$$
rev(r_1 + r_2) \stackrel{\text{def}}{=} rev(r_1) + rev(r_2)
$$

\n
$$
rev(r_1 \cdot r_2) \stackrel{\text{def}}{=} rev(r_2) \cdot rev(r_1)
$$

\n
$$
rev(r^*) \stackrel{\text{def}}{=} rev(r)^*
$$

We can prove

$$
L(rev(r)) = \{s^{-1} \mid s \in L(r)\}
$$

by induction on *r*.

Correctness Proof for our Matcher

• We started from

s ∈ L(*r*) *⇔* [] *∈ Ders s*(*L*(*r*))

Correctness Proof for our Matcher

• We started from

s ∈ L(*r*) *⇔* [] *∈ Ders s*(*L*(*r*))

- if we can show *Ders s* $(L(r)) = L(ders s r)$ we have
	- *⇔* [] *∈ L*(*ders s r*) *⇔ nullable*(*ders s r*) $\stackrel{\text{def}}{=}$ *matchersr*

Proofs about Rexp (5)

Let *Der c A* be the set defined as

$$
\text{Der } c \, A \stackrel{\text{def}}{=} \{ s \mid c :: s \in A \}
$$

We can prove

$$
L(\text{der } cr) = \text{Der } c(L(r))
$$

by induction on *r*.

Proofs about Strings

If we want to prove something, say a property $P(s)$, for all strings *s* then …

- **P** holds for the empty string, and
- *P* holds for the string *c*::*s* under the assumption that *P* already holds for *s*

Proofs about Strings (2)

We can then prove

 $Ders s(L(r)) = L(ders s r)$

We can finally prove

matcher s r if and only if $s \in L(r)$

CFL 02, King's College London – p. 43/52

Epilogue

Epilogue

• How many basic regular expressions are there to match the string *abcd* ?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include **1** and **0**?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include **1** and **0**?
- How many if they are also not allowed to contain stars?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include **1** and **0**?
- How many if they are also not allowed to contain stars?
- How many if they are also not allowed to contain $+$?

Last week I showed you a regular expression matcher that works provably correct in all cases (we only started with the proving part though)

matcher s r if and only if $s \in L(r)$

by Janusz Brzozowski (1964)

Proofs about Rexp

- *P* holds for **0**, **1** and c
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r [∗]* under the assumption that *P* already holds for *r*.

We proved

nullable (r) *if and only if* $[$ $] \in L(r)$

by induction on the regular expression *r*.

We proved

nullable (r) *if and only if* $[$ $] \in L(r)$

by induction on the regular expression *r*.

Any Questions?

Proofs about Natural Numbers and Strings

- *P* holds for 0 and
- *P* holds for $n + 1$ under the assumption that *P* already holds for *n*
- *P* holds for [] and
- *P* holds for *c*::*s* under the assumption that *P* already holds for *s*

Correctness Proof for our Matcher

• We started from

s ∈ L(*r*) *⇔* [] *∈ Ders s*(*L*(*r*))

Correctness Proof for our Matcher

• We started from

s ∈ L(*r*) *⇔* [] *∈ Ders s*(*L*(*r*))

• **if** we can show *Ders s* $(L(r)) = L(ders s r)$ we have

⇔ [] *∈ L*(*ders s r*) *⇔ nullable*(*ders s r*) $\stackrel{\text{def}}{=}$ *matchersr*

We need to prove

$$
L(\text{der } cr) = \text{Der } c(L(r))
$$

also by induction on the regular expression *r*.