Automata and
Formal Languages (5)

Email: christian.urban at kcl.ac.uk
Office: S51.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

Deterministic Finite Automata

A DFA A(Q, qo, F,) consists of:

@ a finite set of states Q

@ one of these states is the start state q,
@ some states are accepting states F

@ a transition function

Deterministic Finite Automata

A DFA A(Q, qo, F,) consists of:

@ a finite set of states Q

@ one of these states is the start state q,
@ some states are accepting states F

@ a transition function

Sa")=q
5(g, c::5) = 5(6(q, 0), 3)

Deterministic Finite Automata

A DFA A(Q, qo, F,) consists of:

@ a finite set of states Q

@ one of these states is the start state g
@ some states are accepting states F'

@ a transition function

oa,"")=q_
(g, c::s) = 6(8(q, c), s)

a
start @.@ - @D a, b
b

b

Deterministic Finite Automata

A DFA A(Q, qo, F,) consists of:

@ a finite set of states Q

@ one of these states is the start state g
@ some states are accepting states F'

@ a transition function

oa,"")=q_
(g, c::s) = 6(8(q, c), s)

a
start @.@ - @D a, b
b

b

Deterministic Finite Automata

A DFA A(Q, qo, F,) consists of:

@ a finite set of states Q

@ one of these states is the start state q,
@ some states are accepting states F

@ a transition function

Sa")=q
5(g, c::5) = 5(6(q, 0), 3)

L(A) = {s| 8(q, s) € F}

Non-Deterministic
Finite Automata

An NFA A(Q, qo, F, §) consists again of:

@ a finite set of states

@ one of these states is the start state
@ some states are accepting states

@ a transition relation

(g1, 0) = q2

(91, a) — g3 Q1. €) =

Non-Deterministic
Finite Automata

An NFA A(Q, qo, F, §) consists again of:

@ a finite set of states

@ one of these states is the start state
@ some states are accepting states

@ a transition relation

(g1, 0) = q2

(91, a) — g3 Q1. €) =

A string s is accepted by an NFA, if there is a
"lucky" sequence to an accepting state.

Last Week

Last week I showed you

@ an algorithm for automata minimisation

@ an algorithm for tfransforming a regular
expression into an NFA

@ an algorithm for transforming an NFA into a DFA
(subset construction)

This Week

Go over the algorithms again, but with two new
thingsand ...

@ with the example: what is the regular expression
that accepts every string, except those ending in
aa?

@ Go over the proof for L(rev(r)) = Rev(L(r)).

@ Anything else so far.

Proofs By Induction

@ P holds for @, eand ¢

@ P holds for ry + ry under the assumption that P
already holds for ry and rs.

@ P holds for ry - ry under the assumption that P
already holds for r; and rs.

@ P holds for r* under the assumption that P
already holds for r.

P(r): L(rev(r)) = Rev(L(r))

What is the regular expression that accepts every
string, except those ending in aa?

What is the regular expression that accepts every
string, except those ending in aa?

(a + b)*ba
(a+ b)*ab
(a + b)*bb

What is the regular expression that accepts every
string, except those ending in aa?

(a + b)*ba
(a+ b)*ab
(a + b)*bb
a

mww

What is the regular expression that accepts every
string, except those ending in aa?

(a + b)*ba
(a+ b)*ab
(a + b)*bb
a

mww

What are the strings to be avoided?

What is the regular expression that accepts every
string, except those ending in aa?

(a + b)*ba
(a+ b)*ab
(a + b)*bb
a

What are the strings to be avoided?

(a + b)*aa

An NFA for (a + b)*aa

b

a a
strt ——(w (0

a

An NFA for (a + b)*aa

b
a a
strt ——(10}
a

Minimisation for DFAs
Subset Construction for NFAs

DFA Minimisation

@ Take all pairs (q, p) with g # p

@ Mark dll pairs that accepting and hon-accepting
states

© For all unmarked pairs (g, p) and all characters ¢
tests wether

(9(q.¢), 0(p.c))
are marked. If yes, then also mark (q, p).
© Repeat last step until nothing changed.
© All unmarked pairs can be merged.

Minimal DFA (a + b)*aa

start @u '@

Minimal DFA not (a + b)*aa

start

Minimal DFA not (a + b)*aa

start

How fo get from a DFA fo a regular expression?

start

start

g =2q +3q1 +4q
g1 =2qy+3q1+1q
g =1q+5q +2q

start

start

€E+qb+qib+q2b
qo a
g2 = qia+qa

q0
qi1

start

g =€+ qb+qb+qb
q. = qoa
g2 = qia+qa

Arden's Lemma:

Ifq=qr + s then g =s7r*

Algorithms on Automata

Reg — NFA: Thompson-McNaughton-Yamada
method

NFA — DFA: Subset Construction
DFA — Reg: Brzozowski's Algebraic Method
DFA minimisation: Hopcrofts Algorithm

complement DFA

Grammars

E — F_|_(F LFORE L) (F n\",F)
F - T+ (T-"+"-T)+(T-"-".T)
T - num+("("-E-")")

E, F and T are non-terminals
E is start symbol
num, (,), +...are terminals

(2%x3)+(3+4)

E — F+(F-"%"-F)+(F
F = T+(T-"+"-T)+ (T
T — num—l—("("-E-")")

(2%x3)+(3+4) E

/\

vv(nEn)n "("E")"
F nwxmn F F

T T T T

| | / AN

2 3 3 4

n\n

T."-v".T

T)

F)

