
Automata and
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Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)
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Deterministic Finite Automata
A DFA A(Q, q0, F, δ) consists of:

a finite set of states Q
one of these states is the start state q0
some states are accepting states F
a transition function δ

δ̂(q, "") = q

δ̂(q, c ::s) = δ̂(δ(q, c), s)
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Deterministic Finite Automata
A DFA A(Q, q0, F, δ) consists of:

a finite set of states Q
one of these states is the start state q0
some states are accepting states F
a transition function δ

δ̂(q, "") = q

δ̂(q, c ::s) = δ̂(δ(q, c), s)

L(A)
def
= {s | δ̂(q0, s) ∈ F}
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Non-Deterministic
Finite Automata

An NFA A(Q, q0, F, δ) consists again of:
a finite set of states
one of these states is the start state
some states are accepting states
a transition relation

(q1, a)→ q2
(q1, a)→ q3

(q1, ε)→ q2

A string s is accepted by an NFA, if there is a
“lucky” sequence to an accepting state.
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Last Week

Last week I showed you

an algorithm for automata minimisation
an algorithm for transforming a regular
expression into an NFA
an algorithm for transforming an NFA into a DFA
(subset construction)

AFL 05, King’s College London, 24. October 2012 – p. 4/15



This Week

Go over the algorithms again, but with two new
things and . . .

with the example: what is the regular expression
that accepts every string, except those ending in
aa?

Go over the proof for L(rev(r)) = Rev(L(r)).

Anything else so far.
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Proofs By Induction
P holds for ∅, ε and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.
P holds for r∗ under the assumption that P
already holds for r.

P (r) : L(rev(r)) = Rev(L(r))
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What is the regular expression that accepts every
string, except those ending in aa?

(a + b)∗ba
(a + b)∗ab
(a + b)∗bb
a
""

What are the strings to be avoided?

(a + b)∗aa
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An NFA for (a + b)∗aa

q0start q1 q2
a a

a

b

Minimisation for DFAs
Subset Construction for NFAs
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DFA Minimisation

1 Take all pairs (q, p) with q 6= p
2 Mark all pairs that accepting and non-accepting

states
3 For all unmarked pairs (q, p) and all characters c

tests wether
(δ(q,c), δ(p,c))

are marked. If yes, then also mark (q, p).
4 Repeat last step until nothing changed.
5 All unmarked pairs can be merged.
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Minimal DFA (a + b)∗aa

q0start q1 q2

a

b

b

a
a

b

How to get from a DFA to a regular expression?

AFL 05, King’s College London, 24. October 2012 – p. 10/15



Minimal DFA not (a + b)∗aa
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q0start q1 q2

a

b

b

a
a

b

q0 = 2 q0 + 3 q1 + 4 q2
q1 = 2 q0 + 3 q1 + 1 q2
q2 = 1 q0 + 5 q1 + 2 q2
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q0start q1 q2

a

b

b

a
a

b

q0 = ε + q0 b + q1 b + q2 b
q1 = q0 a
q2 = q1 a + q2 a

Arden’s Lemma:

If q = q r + s then q = s r∗
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Algorithms on Automata

Reg→ NFA: Thompson-McNaughton-Yamada
method

NFA→ DFA: Subset Construction

DFA→ Reg: Brzozowski’s Algebraic Method

DFA minimisation: Hopcrofts Algorithm

complement DFA
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Grammars

E → F + (F · " ∗ " · F ) + (F · "\" · F )
F → T + (T · "+" · T ) + (T · "-" · T )
T → num + ("(" · E · ")")

E, F and T are non-terminals
E is start symbol
num, (, ), + . . . are terminals

(2*3)+(3+4)
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E
F

T
"("E")"

F "*" F
T
2

T
3

"+" T
"("E")"

F
T "+" T
3 4
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(2*3)+(3+4)


