Automata and Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work and course-work is there)

Regular Expressions

In programming languages they are often used to recognise:

- symbols, digits
- identifiers
- numbers (non-leading zeros)
- keywords
- comments

http://www.regexper.com

AFL 03, King's College London, 9. October 2013 - p. 2/31

Last week I showed you a regular expression matcher which works provably correctly in all cases.

matcher r s if and only if $s \in L(r)$

by Janusz Brzozowski (1964)

AFL 03, King's College London, 9. October 2013 - p. 3/31

The Derivative of a Rexp

 $\stackrel{\text{def}}{\equiv} \varnothing$ $derc(\emptyset)$ $\stackrel{\text{def}}{\equiv} \varnothing$ der $c(\epsilon)$ $\stackrel{\text{\tiny def}}{=}$ if c = d then ϵ else \varnothing der c(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ $der c (r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(\operatorname{der} \operatorname{c} \operatorname{r}_1) \cdot \operatorname{r}_2 + \operatorname{der} \operatorname{c} \operatorname{r}_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (\operatorname{der} c r) \cdot (r^*)$ $der c(r^*)$ $\stackrel{\text{def}}{=} \boldsymbol{r}$ ders[]r $\stackrel{\text{def}}{=} ders \, s \, (der \, c \, r)$ ders(c::s)r

To see what is going on, define

 $Der\, c\, A \stackrel{\scriptscriptstyle{ ext{def}}}{=} \{s \mid c {::}\, s \in A\}$

For $A = \{$ "foo", "bar", "frak" $\}$ then

 $Der f A = \{"oo", "rak"\}$ $Der b A = \{"ar"\}$ $Der a A = \emptyset$

AFL 03, King's College London, 9. October 2013 - p. 5/31

If we want to recognise the string "abc" with regular expression r then

• Der a(L(r))

If we want to recognise the string "abc" with regular expression r then

- Der a(L(r))
- $\bigcirc \ \boldsymbol{Der} \, \boldsymbol{b} \, (\boldsymbol{Der} \, \boldsymbol{a} \, (\boldsymbol{L}(\boldsymbol{r})))$

If we want to recognise the string "abc" with regular expression r then

- Der a(L(r))
- $\bigcirc \ Der \, c \, (Der \, b \, (Der \, a \, (L(r))))$

If we want to recognise the string "abc" with regular expression r then

- Der a(L(r))
- $\bigcirc \ \boldsymbol{Der} \, \boldsymbol{b} \, (\boldsymbol{Der} \, \boldsymbol{a} \, (\boldsymbol{L}(\boldsymbol{r})))$
- $\bigcirc \ Der \, c \, (Der \, b \, (Der \, a \, (L(r))))$
- finally we test whether the empty string is in this set

If we want to recognise the string "abc" with regular expression r then

- Der a(L(r))
- $\bigcirc \ \boldsymbol{Der} \, \boldsymbol{b} \, (\boldsymbol{Der} \, \boldsymbol{a} \, (\boldsymbol{L}(\boldsymbol{r})))$
- $\bigcirc \ Der \, c \, (Der \, b \, (Der \, a \, (L(r))))$
- finally we test whether the empty string is in this set

The matching algorithm works similarly, just over regular expression instead of sets.

Input: string "*abc*" and regular expression *r*

- der a r
- **(der b (der a r)**
- $\bigcirc \ der \, c \, (der \, b \, (der \, a \, r))$

Input: string "*abc*" and regular expression *r*

- o der a r
- **o**der b (der a r)
- $\bigcirc \ der \, c \, (der \, b \, (der \, a \, r))$
- finally check whether the last regular expression can match the empty string

We proved already

nullable(r) if and only if "" $\in L(r)$

by induction on the regular expression.

AFL 03, King's College London, 9. October 2013 - p. 8/31

We proved already

nullable(r) if and only if "" $\in L(r)$

by induction on the regular expression.

Any Questions?

AFL 03, King's College London, 9. October 2013 - p. 8/31

We need to prove

$\boldsymbol{L}(\boldsymbol{der}\,\boldsymbol{c}\,\boldsymbol{r}) = \boldsymbol{Der}\,\boldsymbol{c}\,(\boldsymbol{L}(\boldsymbol{r}))$

by induction on the regular expression.

AFL 03, King's College London, 9. October 2013 – p. 9/31

Proofs about Rexps

- **P** holds for \emptyset , ϵ and c
- *P* holds for *r*₁ + *r*₂ under the assumption that *P* already holds for *r*₁ and *r*₂.
- **P** holds for $r_1 \cdot r_2$ under the assumption that **P** already holds for r_1 and r_2 .
- *P* holds for *r*^{*} under the assumption that *P* already holds for *r*.

Proofs about Natural Numbers and Strings

- **P** holds for 0 and
- *P* holds for *n* + 1 under the assumption that *P* already holds for *n*
- *P* holds for "" and
- *P* holds for *c*:: *s* under the assumption that *P* already holds for *s*

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular expression that recognises all its strings.

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular expression that recognises all its strings.

not all languages are regular, e.g. $a^n b^n$.

Regular Expressions

 $\begin{array}{cccc} \boldsymbol{r} & ::= & \varnothing & & \text{null} \\ & \mid \boldsymbol{\epsilon} & & \text{empty string / "" / []} \\ & \mid \boldsymbol{c} & & \text{character} \\ & \mid \boldsymbol{r}_1 \cdot \boldsymbol{r}_2 & & \text{sequence} \\ & \mid \boldsymbol{r}_1 + \boldsymbol{r}_2 & & \text{alternative / choice} \\ & \mid \boldsymbol{r}^* & & \text{star (zero or more)} \end{array}$

How about ranges [a-z], r^+ and $\sim r$? Do they increase the set of languages we can recognise?

AFL 03, King's College London, 9. October 2013 – p. 13/31

Negation of Regular Expr's

- $\sim r$ (everything that r cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{\tiny def}}{=} not(nullable(r))$
- $der c (\sim r) \stackrel{\text{def}}{=} \sim (der c r)$

Negation of Regular Expr's

- $\sim r$ (everything that r cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{\tiny def}}{=} not(nullable(r))$
- $der c (\sim r) \stackrel{\text{def}}{=} \sim (der c r)$

Used often for recognising comments:

$$/ \cdot * \cdot (\sim ([a - z]^* \cdot * \cdot / \cdot [a - z]^*)) \cdot * \cdot /$$

AFL 03, King's College London, 9. October 2013 - p. 14/31

Assume you have an alphabet consisting of the letters a, b and c only. Find a regular expression that matches all strings except ab and ac.

Regular Exp's for Lexing

Lexing separates strings into "words" / components.

- Identifiers (non-empty strings of letters or digits, starting with a letter)
- Numbers (non-empty sequences of digits omitting leading zeros)
- Keywords (else, if, while, ...)
- White space (a non-empty sequence of blanks, newlines and tabs)
- Comments

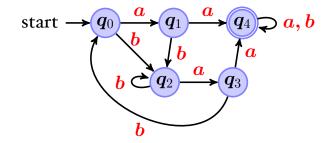
A deterministic finite automaton consists of:

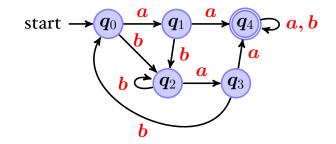
- a set of states
- one of these states is the start state
- some states are accepting states, and
- there is transition function

which takes a state as argument and a character and produces a new state

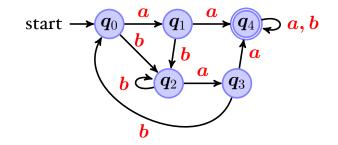
this function might not be everywhere defined

$\boldsymbol{A}(\boldsymbol{Q}, \boldsymbol{q}_0, \boldsymbol{F}, \boldsymbol{\delta})$





- start can be an accepting state
- it is possible that there is no accepting state
- all states might be accepting (but does not necessarily mean all strings are accepted)



for this automaton δ is the function

$$egin{array}{cccc} (oldsymbol{q}_0,oldsymbol{a})
ightarrow oldsymbol{q}_1 & (oldsymbol{q}_1,oldsymbol{a})
ightarrow oldsymbol{q}_4 & (oldsymbol{q}_4,oldsymbol{a})
ightarrow oldsymbol{q}_2 & (oldsymbol{q}_1,oldsymbol{b})
ightarrow oldsymbol{q}_2 & (oldsymbol{q}_4,oldsymbol{b})
ightarrow oldsymbol{q}_4 & \cdots \end{array}$$

AFL 03, King's College London, 9. October 2013 - p. 19/31

Given

 $oldsymbol{A}(oldsymbol{Q},oldsymbol{q}_0,oldsymbol{F},oldsymbol{\delta})$

you can define

$$egin{aligned} \hat{oldsymbol{\delta}}(oldsymbol{q},"") &= oldsymbol{q} \ \hat{oldsymbol{\delta}}(oldsymbol{q},oldsymbol{c}::oldsymbol{s}) &= \hat{oldsymbol{\delta}}(oldsymbol{\delta}(oldsymbol{q},oldsymbol{c}),oldsymbol{s}) \end{aligned}$$

AFL 03, King's College London, 9. October 2013 - p. 20/31

Given

 $oldsymbol{A}(oldsymbol{Q},oldsymbol{q}_0,oldsymbol{F},oldsymbol{\delta})$

you can define

$$egin{aligned} \hat{oldsymbol{\delta}}(oldsymbol{q},"") &= oldsymbol{q} \ \hat{oldsymbol{\delta}}(oldsymbol{q},oldsymbol{c}::oldsymbol{s}) &= \hat{oldsymbol{\delta}}(oldsymbol{\delta}(oldsymbol{q},oldsymbol{c}),oldsymbol{s}) \end{aligned}$$

Whether a string *s* is accepted by *A*?

 $\hat{oldsymbol{\delta}}(oldsymbol{q}_0,oldsymbol{s})\inoldsymbol{F}$

AFL 03, King's College London, 9. October 2013 - p. 20/31

Non-Deterministic Finite Automata

A non-deterministic finite automaton consists again of:

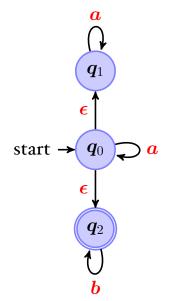
- a finite set of states
- one of these states is the start state
- some states are accepting states, and
- there is transition relation

 $(oldsymbol{q}_1,oldsymbol{a})
ightarrow oldsymbol{q}_2 \ (oldsymbol{q}_1,oldsymbol{a})
ightarrow oldsymbol{q}_3$

 $(\boldsymbol{q}_1,\boldsymbol{\epsilon}) \rightarrow \boldsymbol{q}_2$

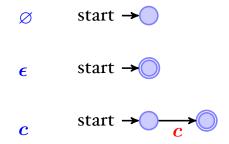
AFL 03, King's College London, 9. October 2013 - p. 21/31

An NFA Example



AFL 03, King's College London, 9. October 2013 - p. 22/31

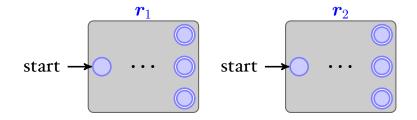
Rexp to NFA



AFL 03, King's College London, 9. October 2013 - p. 23/31

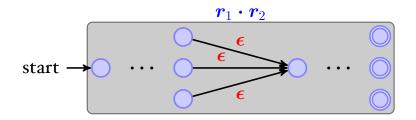
Case $r_1 \cdot r_2$

By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

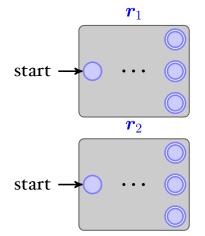
Case $r_1 \cdot r_2$



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

Case $r_1 + r_2$

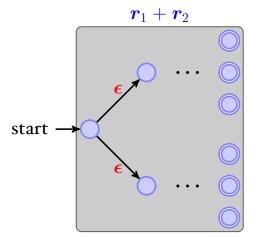
By recursion we are given two automata:



We (1) need to introduce a new starting state and (2) connect it to the original two starting states.

AFL 03, King's College London, 9. October 2013 – p. 25/31

Case $r_1 + r_2$

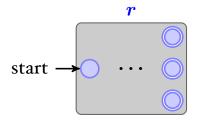


We (1) need to introduce a new starting state and (2) connect it to the original two starting states.

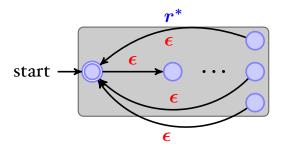
AFL 03, King's College London, 9. October 2013 – p. 25/31

Case r^*

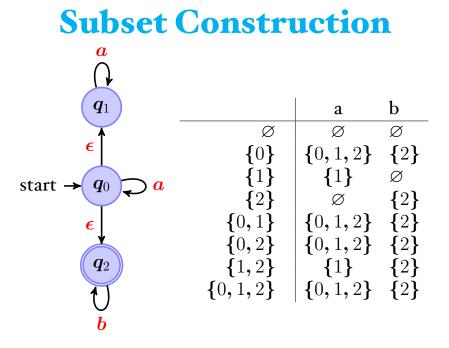
By recursion we are given an automaton for r:



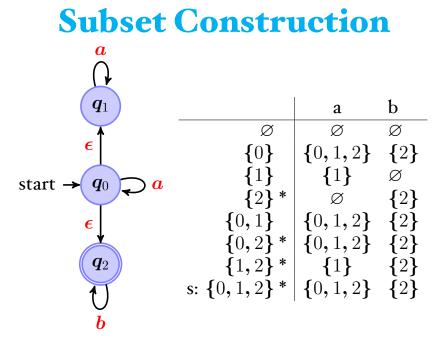
Why can't we just have an epsilon transition from the accepting states to the starting state?



Why can't we just have an epsilon transition from the accepting states to the starting state?



AFL 03, King's College London, 9. October 2013 – p. 27/31



AFL 03, King's College London, 9. October 2013 – p. 27/31

Regular Languages

A language is regular iff there exists a regular expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite automaton that recognises all its strings.

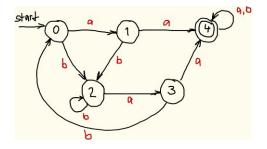
Regular Languages

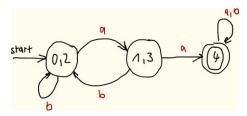
A language is regular iff there exists a regular expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?





minimal automaton

AFL 03, King's College London, 9. October 2013 – p. 29/31

- Take all pairs (q, p) with $q \neq p$
- Mark all pairs that are accepting and non-accepting states
- For all unmarked pairs (q, p) and all characters c tests wether

$(\delta(q,c), \delta(p,c))$

are marked. If yes, then also mark (q, p)

- Sepeat last step until no chance.
- S All unmarked pairs can be merged.

Given the function

$$egin{aligned} egin{aligned} egi$$

and the set

$$Rev\,A\stackrel{ ext{def}}{=}\{s^{-1}\mid s\in A\}$$

prove whether

$$\boldsymbol{L}(\boldsymbol{rev}(\boldsymbol{r})) = \boldsymbol{Rev}(\boldsymbol{L}(\boldsymbol{r}))$$

AFL 03, King's College London, 9. October 2013 - p. 31/31