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Regular Expressions

In programming languages they are often used to
recognise:

symbols, digits
identifiers
numbers (non-leading zeros)
keywords
comments

http://www.regexper.com
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Last Week

Last week I showed you a regular expression
matcher which works provably correctly in all
cases.

matcher r s if and only if s ∈ L(r)

by Janusz Brzozowski (1964)
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The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ)
def
= ∅

der c (d)
def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

ders [] r
def
= r

ders (c ::s) r
def
= ders s (der c r)
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To see what is going on, define

Der cA
def
= {s | c ::s ∈ A}

For A = {”foo”, ”bar”, ”frak”} then

Der f A = {”oo”, ”rak”}
Der bA = {”ar”}
Der aA = ∅
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The Idea of the Algorithm
If we want to recognise the string ”abc” with
regular expression r then

...1 Der a (L(r))

...2 Der b (Der a (L(r)))

...3 Der c (Der b (Der a (L(r))))

...4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.
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Input: string ”abc” and regular expression r

...1 der a r

...2 der b (der a r)

...3 der c (der b (der a r))

...4 finally check whether the last regular expression
can match the empty string
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We proved already

nullable(r) if and only if ”” ∈ L(r)

by induction on the regular expression.

Any Questions?
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We need to prove

L(der c r) = Der c (L(r))

by induction on the regular expression.
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Proofs about Rexps

P holds for ∅, ϵ and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.
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Proofs about Natural
Numbers and Strings

P holds for 0 and
P holds for n + 1 under the assumption that P
already holds for n

P holds for ”” and
P holds for c ::s under the assumption that P
already holds for s
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Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.
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Regular Expressions

r ::= ∅ null
| ϵ empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and ∼ r? Do they
increase the set of languages we can recognise?
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Negation of Regular Expr’s

∼ r (everything that r cannot recognise)

L(∼ r)
def
= UNIV − L(r)

nullable(∼ r)
def
= not (nullable(r))

der c (∼ r)
def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

AFL 03, King’s College London, 9. October 2013 – p. 14/31



Negation of Regular Expr’s

∼ r (everything that r cannot recognise)

L(∼ r)
def
= UNIV − L(r)

nullable(∼ r)
def
= not (nullable(r))

der c (∼ r)
def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

AFL 03, King’s College London, 9. October 2013 – p. 14/31



Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a regular expression
that matches all strings except ab and ac.
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Regular Exp’s for Lexing
Lexing separates strings into “words” /
components.
Identifiers (non-empty strings of letters or digits,
starting with a letter)
Numbers (non-empty sequences of digits
omitting leading zeros)
Keywords (else, if, while, …)
White space (a non-empty sequence of blanks,
newlines and tabs)
Comments
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Automata
A deterministic finite automaton consists of:
a set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state as argument and a character and
produces a new state
this function might not be everywhere defined

A(Q, q0, F, δ)
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..q0.start . q1.

q2

.

q3

. q4. a. a. a, b.

a

.

a

.

b

.
b

.

b

.

b

start can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but does not
necessarily mean all strings are accepted)
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for this automaton δ is the function

(q0, a) → q1 (q1, a) → q4 (q4, a) → q4
(q0, b) → q2 (q1, b) → q2 (q4, b) → q4

…
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Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, ””) = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F
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Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition relation

(q1, a) → q2
(q1, a) → q3

(q1, ϵ) → q2
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An NFA Example

..q0.start .

q1

.

q2

.

ϵ

.

ϵ

. a.

a

.

b
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Rexp to NFA

∅ ...start

ϵ ...start

c
...start ..

c
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Case r1 · r2
By recursion we are given two automata:

....

r1

.

r2

..start . . . ...... start. . . ....

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

AFL 03, King’s College London, 9. October 2013 – p. 24/31



Case r1 · r2

By recursion we are given two automata:

...

r1 · r2

..start . . . ...... . . ..... ϵ.
ϵ

.
ϵ

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

AFL 03, King’s College London, 9. October 2013 – p. 24/31



Case r1 + r2
By recursion we are given two automata:

....

r1

. r2.

..start

..

start

..

start

.

. . .

....

. . .

...

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.
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Case r∗

By recursion we are given an automaton for r:

...

r

.

..start

..start. . . ....

Why can’t we just have an epsilon transition from
the accepting states to the starting state?
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Subset Construction
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a b
∅

*

∅ ∅
{0}

*

{0, 1, 2} {2}
{1}

*

{1} ∅
{2}

*

∅ {2}
{0, 1}

*

{0, 1, 2} {2}
{0, 2}

*

{0, 1, 2} {2}
{1, 2}

*

{1} {2}

s:

{0, 1, 2}

*

{0, 1, 2} {2}



Subset Construction
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..q0.start .

q1
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ϵ

.

ϵ

. a.

a

.

b

a b
∅ * ∅ ∅

{0} * {0, 1, 2} {2}
{1} * {1} ∅
{2} * ∅ {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?
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minimal automaton
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...1 Take all pairs (q, p) with q ̸= p

...2 Mark all pairs that are accepting and
non-accepting states

...3 For all unmarked pairs (q, p) and all characters c
tests wether

(δ(q,c), δ(p,c))
are marked. If yes, then also mark (q, p)

...4 Repeat last step until no chance.

...5 All unmarked pairs can be merged.
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Given the function

rev(∅)
def
=∅

rev(ϵ)
def
= ϵ

rev(c)
def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗)
def
= rev(r)∗

and the set

Rev A
def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))
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