
Automata and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work and course-

work is there)

AFL 03, King’s College London, 9. October 2013 – p. 1/31



Regular Expressions

In programming languages they are often used to
recognise:

symbols, digits
identifiers
numbers (non-leading zeros)
keywords
comments

http://www.regexper.com

AFL 03, King’s College London, 9. October 2013 – p. 2/31

http://www.regexper.com


Last Week

Last week I showed you a regular expression
matcher which works provably correctly in all
cases.

matcher r s if and only if s ∈ L(r)

by Janusz Brzozowski (1964)

AFL 03, King’s College London, 9. October 2013 – p. 3/31



The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ)
def
= ∅

der c (d)
def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

ders [] r
def
= r

ders (c ::s) r
def
= ders s (der c r)

AFL 03, King’s College London, 9. October 2013 – p. 4/31



To see what is going on, define

Der cA
def
= {s | c ::s ∈ A}

For A = {”foo”, ”bar”, ”frak”} then

Der f A = {”oo”, ”rak”}
Der bA = {”ar”}
Der aA = ∅

AFL 03, King’s College London, 9. October 2013 – p. 5/31



The Idea of the Algorithm
If we want to recognise the string ”abc” with
regular expression r then

...1 Der a (L(r))

...2 Der b (Der a (L(r)))

...3 Der c (Der b (Der a (L(r))))

...4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.

AFL 03, King’s College London, 9. October 2013 – p. 6/31



The Idea of the Algorithm
If we want to recognise the string ”abc” with
regular expression r then

...1 Der a (L(r))

...2 Der b (Der a (L(r)))

...3 Der c (Der b (Der a (L(r))))

...4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.

AFL 03, King’s College London, 9. October 2013 – p. 6/31



The Idea of the Algorithm
If we want to recognise the string ”abc” with
regular expression r then

...1 Der a (L(r))

...2 Der b (Der a (L(r)))

...3 Der c (Der b (Der a (L(r))))

...4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.

AFL 03, King’s College London, 9. October 2013 – p. 6/31



The Idea of the Algorithm
If we want to recognise the string ”abc” with
regular expression r then

...1 Der a (L(r))

...2 Der b (Der a (L(r)))

...3 Der c (Der b (Der a (L(r))))

...4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.

AFL 03, King’s College London, 9. October 2013 – p. 6/31



The Idea of the Algorithm
If we want to recognise the string ”abc” with
regular expression r then

...1 Der a (L(r))

...2 Der b (Der a (L(r)))

...3 Der c (Der b (Der a (L(r))))

...4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression instead of sets.

AFL 03, King’s College London, 9. October 2013 – p. 6/31



Input: string ”abc” and regular expression r

...1 der a r

...2 der b (der a r)

...3 der c (der b (der a r))

...4 finally check whether the last regular expression
can match the empty string

AFL 03, King’s College London, 9. October 2013 – p. 7/31



Input: string ”abc” and regular expression r

...1 der a r

...2 der b (der a r)

...3 der c (der b (der a r))

...4 finally check whether the last regular expression
can match the empty string

AFL 03, King’s College London, 9. October 2013 – p. 7/31



We proved already

nullable(r) if and only if ”” ∈ L(r)

by induction on the regular expression.

Any Questions?

AFL 03, King’s College London, 9. October 2013 – p. 8/31



We proved already

nullable(r) if and only if ”” ∈ L(r)

by induction on the regular expression.

Any Questions?

AFL 03, King’s College London, 9. October 2013 – p. 8/31



We need to prove

L(der c r) = Der c (L(r))

by induction on the regular expression.

AFL 03, King’s College London, 9. October 2013 – p. 9/31



Proofs about Rexps

P holds for ∅, ϵ and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.

AFL 03, King’s College London, 9. October 2013 – p. 10/31



Proofs about Natural
Numbers and Strings

P holds for 0 and
P holds for n + 1 under the assumption that P
already holds for n

P holds for ”” and
P holds for c ::s under the assumption that P
already holds for s

AFL 03, King’s College London, 9. October 2013 – p. 11/31



Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.

AFL 03, King’s College London, 9. October 2013 – p. 12/31



Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.

AFL 03, King’s College London, 9. October 2013 – p. 12/31



Regular Expressions

r ::= ∅ null
| ϵ empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and ∼ r? Do they
increase the set of languages we can recognise?

AFL 03, King’s College London, 9. October 2013 – p. 13/31



Negation of Regular Expr’s

∼ r (everything that r cannot recognise)

L(∼ r)
def
= UNIV − L(r)

nullable(∼ r)
def
= not (nullable(r))

der c (∼ r)
def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

AFL 03, King’s College London, 9. October 2013 – p. 14/31



Negation of Regular Expr’s

∼ r (everything that r cannot recognise)

L(∼ r)
def
= UNIV − L(r)

nullable(∼ r)
def
= not (nullable(r))

der c (∼ r)
def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

AFL 03, King’s College London, 9. October 2013 – p. 14/31



Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a regular expression
that matches all strings except ab and ac.

AFL 03, King’s College London, 9. October 2013 – p. 15/31



Regular Exp’s for Lexing
Lexing separates strings into “words” /
components.
Identifiers (non-empty strings of letters or digits,
starting with a letter)
Numbers (non-empty sequences of digits
omitting leading zeros)
Keywords (else, if, while, …)
White space (a non-empty sequence of blanks,
newlines and tabs)
Comments

AFL 03, King’s College London, 9. October 2013 – p. 16/31



Automata
A deterministic finite automaton consists of:
a set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state as argument and a character and
produces a new state
this function might not be everywhere defined

A(Q, q0, F, δ)

AFL 03, King’s College London, 9. October 2013 – p. 17/31



..q0.start . q1.

q2

.

q3

. q4. a. a. a, b.

a

.

a

.

b

.
b

.

b

.

b

start can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but does not
necessarily mean all strings are accepted)

AFL 03, King’s College London, 9. October 2013 – p. 18/31



..q0.start . q1.

q2

.

q3

. q4. a. a. a, b.

a

.

a

.

b

.
b

.

b

.

b

start can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but does not
necessarily mean all strings are accepted)

AFL 03, King’s College London, 9. October 2013 – p. 18/31



..q0.start . q1.

q2

.

q3

. q4. a. a. a, b.

a

.

a

.

b

.
b

.

b

.

b

for this automaton δ is the function

(q0, a) → q1 (q1, a) → q4 (q4, a) → q4
(q0, b) → q2 (q1, b) → q2 (q4, b) → q4

…

AFL 03, King’s College London, 9. October 2013 – p. 19/31



Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, ””) = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F

AFL 03, King’s College London, 9. October 2013 – p. 20/31



Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, ””) = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F

AFL 03, King’s College London, 9. October 2013 – p. 20/31



Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition relation

(q1, a) → q2
(q1, a) → q3

(q1, ϵ) → q2

AFL 03, King’s College London, 9. October 2013 – p. 21/31



An NFA Example

..q0.start .

q1

.

q2

.

ϵ

.

ϵ

. a.

a

.

b
AFL 03, King’s College London, 9. October 2013 – p. 22/31



Rexp to NFA

∅ ...start

ϵ ...start

c
...start ..

c

AFL 03, King’s College London, 9. October 2013 – p. 23/31



Case r1 · r2
By recursion we are given two automata:

....

r1

.

r2

..start . . . ...... start. . . ....

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

AFL 03, King’s College London, 9. October 2013 – p. 24/31



Case r1 · r2

By recursion we are given two automata:

...

r1 · r2

..start . . . ...... . . ..... ϵ.
ϵ

.
ϵ

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

AFL 03, King’s College London, 9. October 2013 – p. 24/31



Case r1 + r2
By recursion we are given two automata:

....

r1

. r2.

..start

..

start

..

start

.

. . .

....

. . .

...

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.

AFL 03, King’s College London, 9. October 2013 – p. 25/31



Case r1 + r2

By recursion we are given two automata:

...

r1 + r2

.

..start ...

. . .

....

. . .

....

ϵ

.

ϵ

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.

AFL 03, King’s College London, 9. October 2013 – p. 25/31



Case r∗

By recursion we are given an automaton for r:

...

r

.

..start

..start. . . ....

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

AFL 03, King’s College London, 9. October 2013 – p. 26/31



Case r∗

By recursion we are given an automaton for r:

...

r∗

.

..start .. . . ..... ϵ.
ϵ

.
ϵ

.

ϵ

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

AFL 03, King’s College London, 9. October 2013 – p. 26/31



Subset Construction

AFL 03, King’s College London, 9. October 2013 – p. 27/31

..q0.start .

q1

.

q2

.

ϵ

.

ϵ

. a.

a

.

b

a b
∅

*

∅ ∅
{0}

*

{0, 1, 2} {2}
{1}

*

{1} ∅
{2}

*

∅ {2}
{0, 1}

*

{0, 1, 2} {2}
{0, 2}

*

{0, 1, 2} {2}
{1, 2}

*

{1} {2}

s:

{0, 1, 2}

*

{0, 1, 2} {2}



Subset Construction

AFL 03, King’s College London, 9. October 2013 – p. 27/31

..q0.start .

q1

.

q2

.

ϵ

.

ϵ

. a.

a

.

b

a b
∅ * ∅ ∅

{0} * {0, 1, 2} {2}
{1} * {1} ∅
{2} * ∅ {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?

AFL 03, King’s College London, 9. October 2013 – p. 28/31



Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?

AFL 03, King’s College London, 9. October 2013 – p. 28/31



minimal automaton

AFL 03, King’s College London, 9. October 2013 – p. 29/31



...1 Take all pairs (q, p) with q ̸= p

...2 Mark all pairs that are accepting and
non-accepting states

...3 For all unmarked pairs (q, p) and all characters c
tests wether

(δ(q,c), δ(p,c))
are marked. If yes, then also mark (q, p)

...4 Repeat last step until no chance.

...5 All unmarked pairs can be merged.

AFL 03, King’s College London, 9. October 2013 – p. 30/31



Given the function

rev(∅)
def
=∅

rev(ϵ)
def
= ϵ

rev(c)
def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗)
def
= rev(r)∗

and the set

Rev A
def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))

AFL 03, King’s College London, 9. October 2013 – p. 31/31


