
Handout 2 (Regular Expression Matching)
This lecture is about implementing a more efficient regular expression matcher
(the plots on the right below)—more efficient than the matchers from regu‑
lar expression libraries in Ruby, Python, JavaScript and Java (the plots on the
left). For this consider some experimental data: The first pair of plots shows the
running time for the regular expression (a∗)∗ · b and strings composed of n as
(meaning this regular expression actually does not match the strings). The sec‑
ond pair of plots shows the running time for the regular expressions a?{n} · a{n}

and strings also composed of n as (this time the regular expressions match the
strings). To see the substantial differences in the left and right plots below, note
the different scales of the x‑axes.

Graphs: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Java 8
Python
JavaScript

0 2 4

·106

0
5

10
15
20
25
30

n

tim
e
in

se
cs

Our matcher

Graphs: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Ruby

0 2,500 5,000 7,500 10,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Our matcher

In what follows we will use these regular expressions and strings as running
examples. There will be several versions (V1, V2, V3,…) of our matcher.1

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017, 2018, 2019
1The corresponding files are re1.scala, re2.scala and so on. As usual, you can find the code

on KEATS.

1

Having specified in the previous lecture what problem our regular expression
matcher is supposed to solve, namely for any given regular expression r and
string s answer true if and only if

s ∈ L(r)

we can look for an algorithm to solve this problem. Clearly we cannot use the
function L directly for this, because in general the set of strings L returns is
infinite (recall what L(a∗) is). In such cases there is no way we can implement
an exhaustive test for whether a string is member of this set or not. In contrast
our matching algorithm will operate on the regular expression r and string s,
only, which are both finite objects. Before we explain the matching algorithm,
let us have a closer look at what it means when two regular expressions are
equivalent.

Regular Expression Equivalences
We already defined in Handout 1 what it means for two regular expressions to
be equivalent, namely if their meaning is the same language:

r1 ≡ r2
def
= L(r1) = L(r2)

It is relatively easy to verify that some concrete equivalences hold, for example

(a + b) + c ≡ a + (b + c)
a + a ≡ a
a + b ≡ b + a

(a · b) · c ≡ a · (b · c)
c · (a + b) ≡ (c · a) + (c · b)

but also easy to verify that the following regular expressions are not equivalent

a · a ̸≡ a
a + (b · c) ̸≡ (a + b) · (a + c)

I leave it to you to verify these equivalences and non‑equivalences. It is also
interesting to look at some corner cases involving 1 and 0:

a · 0 ̸≡ a
a + 1 ̸≡ a

1 ≡ 0∗
1∗ ≡ 1
0∗ ̸≡ 0

Again I leave it to you to make sure you agree with these equivalences and
non‑equivalences.

For our matching algorithm however the following seven equivalences will
play an important role:

2

r + 0 ≡ r
0+ r ≡ r

r · 1 ≡ r
1 · r ≡ r
r · 0 ≡ 0
0 · r ≡ 0

r + r ≡ r

which always hold no matter what the regular expression r looks like. The first
two are easy to verify since L(0) is the empty set. The next two are also easy
to verify since L(1) = {[]} and appending the empty string to every string
of another set, leaves the set unchanged. Be careful to fully comprehend the
fifth and sixth equivalence: if you concatenate two sets of strings and one is the
empty set, then the concatenation will also be the empty set. To see this, check
the definition of _@_ for sets. The last equivalence is again trivial.

What will be important later on is that we can orient these equivalences and
read them from left to right. In this waywe can view them as simplification rules.
Consider for example the regular expression

(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0) (1)

If we can find an equivalent regular expression that is simpler (that usually
means smaller), then this might potentially make our matching algorithm run
faster. We can look for such a simpler regular expression r′ because whether a
string s is in L(r) or in L(r′)with r ≡ r′ will always give the same answer. Yes?

In the example above you will see that the regular expression is equivalent
to just r1. You can verify this by iteratively applying the simplification rules
from above:

(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0)
≡ (r1 + 0) · 1+ ((1+ r2) + r3) · 0
≡ (r1 + 0) · 1+ 0
≡ (r1 + 0) + 0
≡ r1 + 0
≡ r1

In each step, I underlined where a simplification rule is applied. Our match‑
ing algorithm in the next section will often generate such “useless” 1s and 0s,
therefore simplifying them away will make the algorithm quite a bit faster.

Finally here are three equivalences between regular expressions which are
not so obvious:

r∗ ≡ 1 + r · r∗

(r1 + r2)
∗ ≡ r∗1 · (r2 · r∗1)

∗

(r1 · r2)
∗ ≡ 1 + r1 · (r2 · r1)

∗ · r2

3

We will not use them in our algorithm, but feel free to convince yourself that
they hold. As an aside, there has been a lot of research about questions like:
Can one always decide when two regular expressions are equivalent or not?
What does an algorithm look like to decide this efficiently? So in general it is
not a trivial problem.

The Matching Algorithm
The algorithm we will define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean in Scala). This can
be easily defined recursively as follows:

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if [] ∈ L(r)

Note on the left‑hand side of the if‑and‑only‑if we have a function we can im‑
plement; on the right we have its specification (which we cannot implement in
a programming language).

The other function of ourmatching algorithm calculates a derivative of a reg‑
ular expression. This is a function which will take a regular expression, say r,
and a character, say c, as arguments and returns a new regular expression. Be
mindful that the intuition behind this function is not so easy to grasp on first
reading. Essentially this function solves the following problem: if r canmatch a
string of the form c :: s, what does a regular expression look like that can match
just s? The definition of this function is as follows:

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

4

The first two clauses can be rationalised as follows: recall that der should calcu‑
late a regular expression so that given the “input” regular expression canmatch
a string of the form c :: s, we want a regular expression for s. Since neither 0 nor
1 can match a string of the form c :: s, we return 0. In the third case we have to
make a case‑distinction: In case the regular expression is c, then clearly it can
recognise a string of the form c :: s, just that s is the empty string. Therefore
we return the 1‑regular expression. In the other case we again return 0 since
no string of the c :: s can be matched. Next come the recursive cases, which are
a bit more involved. Fortunately, the +‑case is still relatively straightforward:
all strings of the form c :: s are either matched by the regular expression r1 or r2.
So we just have to recursively call der with these two regular expressions and
compose the results again with +. Makes sense?

The ·‑case is more complicated: if r1 · r2 matches a string of the form c :: s,
then the first part must be matched by r1. Consequently, it makes sense to
construct the regular expression for s by calling der with r1 and “appending”
r2. There is however one exception to this simple rule: if r1 canmatch the empty
string, then all of c :: s ismatched by r2. So in case r1 is nullable (that is canmatch
the empty string) we have to allow the choice der c r2 for calculating the regular
expression that can match s. Therefore we have to add the regular expression
der c r2 in the result. The ∗‑case is again simple: if r∗ matches a string of the
form c :: s, then the first part must be “matched” by a single copy of r. Therefore
we call recursively der c r and “append” r∗ in order to match the rest of s. Still
makes sense?

If all this did not make sense yet, here is another way to explain the defini‑
tion of der by considering the following operation on sets:

Der c A def
= {s | c :: s ∈ A} (2)

This operation essentially transforms a set of strings A by filtering out all strings
that do not start with c and then strips off the c from all the remaining strings.
For example suppose A = { foo, bar, frak} then

Der f A = {oo, rak} , Der b A = {ar} and Der a A = {}

Note that in the last caseDer is empty, because no string in A starts with a. With
this operation we can state the following property about der:

L(der c r) = Der c (L(r))

This property clarifies what regular expression der calculates, namely take the
set of strings that r canmatch (that is L(r)), filter out all strings not startingwith
c and strip off the c from the remaining strings—this is exactly the language that
der c r can match.

If we want to find out whether the string abc is matched by the regular ex‑
pression r1 then we can iteratively apply der as follows

5

Input: r1, abc

Step 1: build derivative of a and r1 (r2 = der a r1)

Step 2: build derivative of b and r2 (r3 = der b r2)

Step 3: build derivative of c and r3 (r4 = der c r3)

Step 4: the string is exhausted: (nullable(r4))
test whether r4 can recognise the
empty string

Output: result of this test⇒ true or false

Again the operation Der might help to rationalise this algorithm. We want
to know whether abc ∈ L(r1). We do not know yet—but let us assume it is.
Then Der a L(r1) builds the set where all the strings not starting with a are fil‑
tered out. Of the remaining strings, the a is stripped off. So we should still
have bc in the set. Then we continue with filtering out all strings not starting
with b and stripping off the b from the remaining strings, that means we build
Der b (Der a (L(r1))). Finallywe filter out all strings not startingwith c and strip
off c from the remaining string. This is Der c (Der b (Der a (L(r1)))). Now if abc
was in the original set (L(r1)), then Der c (Der b (Der a (L(r1)))) must contain
the empty string. If not, then abc was not in the language we started with.

Our matching algorithm using der and nullable works similarly, just using
regular expressions instead of sets. In order to define our algorithmwe need to
extend the notion of derivatives from single characters to strings. This can be
done using the following function, taking a string and a regular expression as
input and a regular expression as output.

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

This function iterates der taking one character at the time from the original
string until the string is exhausted. Having ders in place, we can finally define
our matching algorithm:

matches r s def
= nullable(ders s r)

and we can claim that

matches r s if and only if s ∈ L(r)

holds, which means our algorithm satisfies the specification. Of course we can
claim many things…whether the claim holds any water is a different question,
which for example is the point of the Strand‑2 Coursework.

This algorithm was introduced by Janusz Brzozowski in 1964, but is more
widely known only in the last 10 or so years. Its main attractions are simplicity
and being fast, as well as being easily extendible for other regular expressions
such as r{n}, r?, ∼ r and so on (this is subject of Strand‑1 Coursework 1).

6

The Matching Algorithm in Scala
Another attraction of the algorithm is that it can be easily implemented in a
functional programming language, like Scala. Given the implementation of
regular expressions in Scala shown in the first lecture and handout, the func‑
tions and subfunctions for matches are shown in Figure 1.

For running the algorithm with our first example, the evil regular expres‑
sion a?{n} · a{n}, we need to implement the optional regular expression and the
‘exactly n‑times regular expression’. This can be done with the translations

def OPT(r: Rexp) = ALT(r, ONE)

def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => ONE
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))

}

Running the matcher with this example, we find it is slightly worse then the
matcher in Ruby and Python. Ooops…

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

Python
Ruby
Scala V1

Analysing this failure we notice that for a{n}, for example, we generate quite
big regular expressions:

1: a
2: a · a
3: a · a · a

…
13: a · a · a · a · a · a · a · a · a · a · a · a · a

…

Our algorithm traverses such regular expressions at least once every time a
derivative is calculated. So having large regular expressions will cause prob‑
lems. This problem is aggravated by a? being represented as a + 1.

7

1 def nullable(r: Rexp) : Boolean = r match {
2 case ZERO => false
3 case ONE => true
4 case CHAR(_) => false
5 case ALT(r1, r2) => nullable(r1) || nullable(r2)
6 case SEQ(r1, r2) => nullable(r1) && nullable(r2)
7 case STAR(_) => true
8 }
9

10 def der(c: Char, r: Rexp) : Rexp = r match {
11 case ZERO => ZERO
12 case ONE => ZERO
13 case CHAR(d) => if (c == d) ONE else ZERO
14 case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
15 case SEQ(r1, r2) =>
16 if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
17 else SEQ(der(c, r1), r2)
18 case STAR(r) => SEQ(der(c, r), STAR(r))
19 }
20

21 def ders(s: List[Char], r: Rexp) : Rexp = s match {
22 case Nil => r
23 case c::s => ders(s, der(c, r))
24 }
25

26 def matches(r: Rexp, s: String) : Boolean =
27 nullable(ders(s.toList , r))

Figure 1: A Scala implementation of nullable and derivative function. These
functions are easy to implement in functional programming languages. This
is because pattern matching and recursion allow us to mimic the mathematical
definitions very closely. Nearly all functional programming languages support
pattern matching and recursion out of the box.

8

We can however fix this easily by having an explicit constructor for r{n}. In
Scala we would introduce a constructor like

case class NTIMES(r: Rexp, n: Int) extends Rexp

With this fix we have a constant “size” regular expression for our running ex‑
ample no matter how large n is (see the size section in the implementations).
This means we have to also add cases for NTIMES in the functions nullable and
der. Does the change have any effect?

200 400 600 800 1,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

Python
Ruby
Scala V1
Scala V2

Now we are talking business! The modified matcher can within 25 seconds
handle regular expressions up to n = 1, 100 before a StackOverflow is raised.
Recall that Python and Ruby (and our first version, Scala V1) could only handle
n = 27 or so in 30 seconds. We have not tried our algorithm on the second
example (a∗)∗ · b—I leave this to you.

The moral is that our algorithm is rather sensitive to the size of regular ex‑
pressions it needs to handle. This is of course obvious because both nullable
and der frequently need to traverse the whole regular expression. There seems,
however, one more issue for making the algorithm run faster. The deriva‑
tive function often produces “useless” 0s and 1s. To see this, consider r =
((a · b) + b)∗ and the following three derivatives

der a r = ((1 · b) + 0) · r
der b r = ((0 · b) + 1) · r
der c r = ((0 · b) + 0) · r

If we simplify themaccording to the simplification rules from the beginning, we
can replace the right‑hand sides by the smaller equivalent regular expressions

der a r ≡ b · r
der b r ≡ r
der c r ≡ 0

9

I leave it to you to contemplate whether such a simplification can have any im‑
pact on the correctness of our algorithm (will it change any answers?). Figure 2
gives a simplification function that recursively traverses a regular expression
and simplifies it according to the rules given at the beginning. There are only
rules for + and ·. There is no simplification rule for a star, because empirical
data and also a little thought showed that simplifying under a star is a waste of
computation time. The simplification function will be called after every deriva‑
tion. This additional step removes all the “junk” the derivative function intro‑
duced. Does this improve the speed? You bet!!

0 2,500 5,000 7,500 10,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

Scala V2
Scala V3

To recap, Python and Ruby needed approximately 30 seconds to match a string
of 28 as and the regular expression a?{n} · a{n}. We need a third of this time to
do the same with strings up to 11,000 as. Similarly, Java 8 and Python needed
30 seconds to find out the regular expression (a∗)∗ · b does not match the string
of 28 as. In Java 9 and later this has been cranked up to 39,000 as, but we can do
the same in the same amount of time for strings composed of nearly 6,000,000
as. This is shown in the following plot.

0 1 2 3 4 5

·106

0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

Scala V3

10

1 def simp(r: Rexp) : Rexp = r match {
2 case ALT(r1, r2) => {
3 (simp(r1), simp(r2)) match {
4 case (ZERO, r2s) => r2s
5 case (r1s, ZERO) => r1s
6 case (r1s, r2s) =>
7 if (r1s == r2s) r1s else ALT(r1s, r2s)
8 }
9 }
10 case SEQ(r1, r2) => {
11 (simp(r1), simp(r2)) match {
12 case (ZERO, _) => ZERO
13 case (_, ZERO) => ZERO
14 case (ONE, r2s) => r2s
15 case (r1s, ONE) => r1s
16 case (r1s, r2s) => SEQ(r1s, r2s)
17 }
18 }
19 case r => r
20 }
21

22 def ders(s: List[Char], r: Rexp) : Rexp = s match {
23 case Nil => r
24 case c::s => ders(s, simp(der(c, r)))
25 }

Figure 2: The simplification function andmodified ders‑function; this function
now calls der first, but then simplifies the resulting derivative regular expres‑
sions before building the next derivative, see Line 24.

11

Epilogue
(23/Aug/2016) I found another place where this algorithm can be sped up (this
idea is not integrated with what is coming next, but I present it nonetheless).
The idea is to not define ders that it iterates the derivative character‑by‑character,
but in bigger chunks. The resulting code for ders2 looks as follows:

def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match {
case (Nil, r) => r
case (s, ZERO) => ZERO
case (s, ONE) => if (s == Nil) ONE else ZERO
case (s, CHAR(c)) => if (s == List(c)) ONE else

if (s == Nil) CHAR(c) else ZERO
case (s, ALT(r1, r2)) => ALT(ders2(s, r2), ders2(s, r2))
case (c::s, r) => ders2(s, simp(der(c, r)))

}
I have not fully understood why this version is much faster, but it seems it is a
combination of the clauses for ALT and SEQ. In the latter case we call der with
a single character and this potentially produces an alternative. The derivative
of such an alternative can then be more efficiently calculated by ders2 since it
pushes a whole string under an ALT. The numbers are that in the second case
(a∗)∗ · b both versions are pretty much the same, but in the first case a?{n} · a{n}

the improvement gives another factor of 100 speedup. Nice!

0 2 4 6

·106

0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

Scala V3
Scala V4

0 2 4 6 8

·106

0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

Scala V3
Scala V4

Proofs
You might not like doing proofs. But they serve a very important purpose in
Computer Science: How can we be sure that our algorithm matches its specifi‑
cation? We can try to test the algorithm, but that often overlooks corner cases

12

and an exhaustive testing is impossible (since there are infinitely many inputs).
Proofs allow us to ensure that an algorithm really meets its specification.

For the programs we look at in this module, the proofs will mostly by some
form of induction. Remember that regular expressions are defined as

r ::= 0 nothing
| 1 empty string / "" / []
| c single character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

If you want to show a property P(r) for all regular expressions r, then you have
to follow essentially the recipe:

• P has to hold for 0, 1 and c (these are the base cases).

• P has to hold for r1 + r2 under the assumption that P already holds for r1
and r2.

• P has to hold for r1 · r2 under the assumption that P already holds for r1
and r2.

• P has to hold for r∗ under the assumption that P already holds for r.

A simple proof is for example showing the following property:

nullable(r) if and only if [] ∈ L(r) (3)

Let us say that this property is P(r), then the first case we need to check is
whether P(0) (see recipe above). So we have to show that

nullable(0) if and only if [] ∈ L(0)

whereby nullable(0) is by definition of the function nullable always false. We
also have that L(0) is by definition {}. It is impossible that the empty string []
is in the empty set. Therefore also the right‑hand side is false. Consequently
we verified this case: both sides are false. We would still need to do this for
P(1) and P(c). I leave this to you to verify.

Next we need to check the inductive cases, for example P(r1 + r2), which is

nullable(r1 + r2) if and only if [] ∈ L(r1 + r2) (4)

The difference to the base cases is that in the inductive cases we can already
assume we proved P for the components, that is we can assume.

nullable(r1) if and only if [] ∈ L(r1) and
nullable(r2) if and only if [] ∈ L(r2)

13

These are called the induction hypotheses. To check this case, we can start from
nullable(r1 + r2), which by definition of nullable is

nullable(r1) ∨ nullable(r2)

Using the two induction hypotheses from above, we can transform this into

[] ∈ L(r1) ∨ [] ∈ (r2)

We just replaced the nullable(. . .) parts by the equivalent [] ∈ L(. . .) from the
induction hypotheses. A bit of thinking convinces you that if [] ∈ L(r1) ∨ [] ∈
L(r2) then the empty string must be in the union L(r1) ∪ L(r2), that is

[] ∈ L(r1) ∪ L(r2)

but this is by definition of L exactly [] ∈ L(r1 + r2), which we needed to es‑
tablish according to statement in (4). What we have shown is that starting
from nullable(r1 + r2)we have done equivalent transformations to end up with
[] ∈ L(r1 + r2). Consequently we have established that P(r1 + r2) holds.

In order to complete the proof we would now need to look at the cases
P(r1 · r2) and P(r∗). Again I let you check the details.

You might also have to do induction proofs over strings. That means you
want to establish a property P(s) for all strings s. For this remember strings
are lists of characters. These lists can be either the empty list or a list of the
form c :: s. If you want to perform an induction proof for strings you need to
consider the cases

• P has to hold for [] (this is the base case).

• P has to hold for c :: s under the assumption that P already holds for s.

Given this recipe, I let you show

Ders s (L(r)) = L(ders s r) (5)

by induction on s. Recall Der is defined for character—see (2); Ders is similar,
but for strings:

Ders s A def
= {s′ | s@s′ ∈ A}

In this proof you can assume the following property for der andDer has already
been proved, that is you can assume

L(der c r) = Der c (L(r))

holds (this would be of course another property that needs to be proved in a
side‑lemma by induction on r). This is a bit more challenging, but not impossi‑
ble.

To sum up, using reasoning like the one shown above allows us to show the
correctness of our algorithm. To see this, start from the specification

14

s ∈ L(r)

That is the problem we want to solve. Thinking a little, you will see that this
problem is equivalent to the following problem

[] ∈ Ders s (L(r)) (6)

You agree? But we have shown above in (5), that the Ders can be replaced by
L(ders . . .). That means (6) is equivalent to

[] ∈ L(ders s r) (7)

We have also shown that testing whether the empty string is in a language is
equivalent to the nullable function; see (3). That means (7) is equivalent with

nullable(ders s r)

But this is just the definition of matches

matches s r def
= nullable(ders s r)

In effect we have shown

matches s r if and only if s ∈ L(r)

which is the property we set out to prove: our algorithmmeets its specification.
To have done so, requires a few induction proofs about strings and regular
expressions. Following the induction recipes is already a big step in actually
performing these proofs. If you do not believe it, proofs have helped me to
make sure my code is correct and in several instances prevented me of letting
slip embarrassing mistakes into the ‘wild’.

15

