
Compilers and
Formal Languages (2)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework is there)

CFL 02, King’s College London – p. 1/41



AnEfficient Regular
ExpressionMatcher
Graphs: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸

n

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Ruby

0 5,000 10,000
0
5

10
15
20
25
30

n
tim

e
in

se
cs

Scala V2
Scala V3

In the handouts is a similar graph for (a∗)∗ · b and Java.

CFL 02, King’s College London – p. 2/41



Evil Regular Expressions

Regular expression Denial of Service (ReDoS)

Evil regular expressions
(a?{n}) · a{n}
(a∗)∗
([a - z]+)∗
(a+ a · a)∗
(a+ a?)∗

sometimes also called catastrophic backtracking

CFL 02, King’s College London – p. 3/41



Languages
A Language is a set of strings, for example

{[], hello, foobar, a, abc}

Concatenation of strings and languages
foo @ bar = foobar

A @ B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B}

For example A = {foo, bar}, B = {a, b}

A@B = {fooa, foob, bara, barb}

CFL 02, King’s College London – p. 4/41



The PowerOperation

The nth Power of a language:

A0 def
= {[]}

An+1 def
= A@An

For example
A4 = A@A@A@A (@ {[]})
A1 = A (@ {[]})
A0 = {[]}

CFL 02, King’s College London – p. 5/41



HomeworkQuestion

Say A = {[a], [b], [c], [d]}.

How many strings are in A4?

What if A = {[a], [b], [c], []};
how many strings are then in A4?

CFL 02, King’s College London – p. 6/41



HomeworkQuestion

Say A = {[a], [b], [c], [d]}.

How many strings are in A4?

What if A = {[a], [b], [c], []};
how many strings are then in A4?

CFL 02, King’s College London – p. 6/41



The StarOperation
TheKleene Star of a language:

A⋆
def
=

∪
0≤nAn

This expands to

A0 ∪A1 ∪A2 ∪A3 ∪A4 ∪ . . .

{[]} ∪ A ∪ A@A ∪ A@A@A ∪ A@A@A@A ∪ . . .

CFL 02, King’s College London – p. 7/41



TheMeaning of a
Regular Expression

CFL 02, King’s College London – p. 8/41

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
= (L(r))⋆ def

=
∪

0≤n L(r)n

L is a function from regular expressions
to sets of strings (languages):
L : Rexp ⇒ Set[String]



Semantic Derivative
The Semantic Derivative of a language
wrt to a character c:

Der cA def
= {s | c :: s ∈ A}

For A = {foo, bar,frak} then
Der fA = {oo, rak}
Der bA = {ar}
Der aA = {}

We can extend this definition to strings

Ders s A = {s′ | s@ s′ ∈ A}

CFL 02, King’s College London – p. 9/41



Semantic Derivative
The Semantic Derivative of a language
wrt to a character c:

Der cA def
= {s | c :: s ∈ A}

For A = {foo, bar,frak} then
Der fA = {oo, rak}
Der bA = {ar}
Der aA = {}

We can extend this definition to strings

Ders s A = {s′ | s@ s′ ∈ A}
CFL 02, King’s College London – p. 9/41



The Specification
ofMatching

A regular expression r matches a
string s provided

s ∈ L(r)

…and the point of the this lecture is to decide this
problem as fast as possible (unlike Python, Ruby,
Java etc)

CFL 02, King’s College London – p. 10/41



Regular Expressions
Their inductive definition:

CFL 02, King’s College London – p. 11/41

r ::= 0 nothing
| 1 empty string / ”” / []
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)



Regular Expressions
Their inductive definition:

CFL 02, King’s College London – p. 11/41

r ::= 0 nothing
| 1 empty string / ”” / []
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp



WhenAre TwoRegular
Expressions Equivalent?

r1 ≡ r2
def
= L(r1) = L(r2)

CFL 02, King’s College London – p. 12/41



Concrete Equivalences
(a+ b) + c ≡ a+ (b+ c)

a+ a ≡ a
a+ b ≡ b+ a

(a · b) · c ≡ a · (b · c)
c · (a+ b) ≡ (c · a) + (c · b)

a · a ̸≡ a
a+ (b · c) ̸≡ (a+ b) · (a+ c)

CFL 02, King’s College London – p. 13/41



Concrete Equivalences
(a+ b) + c ≡ a+ (b+ c)

a+ a ≡ a
a+ b ≡ b+ a

(a · b) · c ≡ a · (b · c)
c · (a+ b) ≡ (c · a) + (c · b)

a · a ̸≡ a
a+ (b · c) ̸≡ (a+ b) · (a+ c)

CFL 02, King’s College London – p. 13/41



Corner Cases
a · 0 ̸≡ a
a+ 1 ̸≡ a

1 ≡ 0∗

1∗ ≡ 1
0∗ ̸≡ 0

CFL 02, King’s College London – p. 14/41



Simplification Rules
r+ 0 ≡ r
0+ r ≡ r
r · 1 ≡ r
1 · r ≡ r
r · 0 ≡ 0
0 · r ≡ 0
r+ r ≡ r

CFL 02, King’s College London – p. 15/41



AMatching Algorithm
…whether a regular expression can match the
empty string:

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

CFL 02, King’s College London – p. 16/41



TheDerivative of a Rexp

If r matches the string c :: s, what is a
regular expression that matches just s?

der c r gives the answer, Brzozowski 1964

CFL 02, King’s College London – p. 17/41



TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

CFL 02, King’s College London – p. 18/41



TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

CFL 02, King’s College London – p. 18/41



Examples

Given r def
= ((a · b) + b)∗ what is

der a r = ?
der b r = ?
der c r = ?

CFL 02, King’s College London – p. 19/41



TheAlgorithm

matches r s def
= nullable(ders r s)

CFL 02, King’s College London – p. 20/41



AnExample
Does r1 match abc?

Step 1: build derivative of a and r1 (r2 = der a r1)
Step 2: build derivative of b and r2 (r3 = der b r2)
Step 3: build derivative of c and r3 (r4 = der c r3)
Step 4: the string is exhausted: (nullable(r4))

test whether r4 can recognise
the empty string

Output: result of the test
⇒ true or false

CFL 02, King’s College London – p. 21/41



The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r1 then

1 Der a (L(r1))

2 Der b (Der a (L(r1)))
3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).
The matching algorithm works similarly, just over
regular expressions instead of sets.

CFL 02, King’s College London – p. 22/41



The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r1 then

1 Der a (L(r1))
2 Der b (Der a (L(r1)))

3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).
The matching algorithm works similarly, just over
regular expressions instead of sets.

CFL 02, King’s College London – p. 22/41



The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r1 then

1 Der a (L(r1))
2 Der b (Der a (L(r1)))
3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).
The matching algorithm works similarly, just over
regular expressions instead of sets.

CFL 02, King’s College London – p. 22/41



Oops…(a?{n}) · a{n}

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Ruby
Scala V1

CFL 02, King’s College London – p. 23/41



AProblem
We represented the “n-times” a{n} as a sequence
regular expression:

1: a
2: a · a
3: a · a · a

…
13: a · a · a · a · a · a · a · a · a · a · a · a · a

…
20:

This problem is aggravated with a? being
represented as a+ 1.

CFL 02, King’s College London – p. 24/41



Solving the Problem

What happens if we extend our regular
expressions with explicit constructors

r ::= …
| r{n}
| r?

What is their meaning?
What are the cases for nullable and der?

CFL 02, King’s College London – p. 25/41



(a?{n}) · a{n}

200 400 600 8001,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Ruby
Scala V1
Scala V2

CFL 02, King’s College London – p. 26/41



Examples

Recall the example of r def
= ((a · b) + b)∗ with

der a r = ((1 · b) + 0) · r
der b r = ((0 · b) + 1) · r
der c r = ((0 · b) + 0) · r

What are these regular expressions equivalent to?

CFL 02, King’s College London – p. 27/41



Simplifiaction
r+ 0 ⇒ r
0+ r ⇒ r
r · 1 ⇒ r
1 · r ⇒ r
r · 0 ⇒ 0
0 · r ⇒ 0
r+ r ⇒ r

def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))

}

CFL 02, King’s College London – p. 28/41



def simp(r: Rexp) : Rexp = r match {
case ALT(r1, r2) => {

(simp(r1), simp(r2)) match {
case (ZERO, r2s) => r2s
case (r1s, ZERO) => r1s
case (r1s, r2s) =>

if (r1s == r2s) r1s else ALT(r1s, r2s)
}

}
case SEQ(r1, r2) => {

(simp(r1), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, ONE) => r1s
case (r1s, r2s) => SEQ(r1s, r2s)

}
}
case NTIMES(r, n) => NTIMES(simp(r), n)
case r => r

}

def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))

}

CFL 02, King’s College London – p. 29/41



(a?{n}) · a{n}

0 5,000 10,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Scala V2
Scala V3

CFL 02, King’s College London – p. 30/41



(a∗)∗ · b

0 1 2 3 4 5

·106

0

10

20

30

n

tim
e
in

se
cs Scala V3

CFL 02, King’s College London – p. 31/41



What is good about this Alg.
extends to most regular expressions, for example
∼ r
is easy to implement in a functional language
the algorithm is already quite old; there is still
work to be done to use it as a tokenizer (that is
relatively new work)
we can prove its correctness…

CFL 02, King’s College London – p. 32/41



Proofs about Rexps
Remember their inductive definition:

If we want to prove something, say a property
P(r), for all regular expressions r then …

CFL 02, King’s College London – p. 33/41

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2
| r∗



Proofs about Rexp (2)

P holds for 0, 1 and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.

CFL 02, King’s College London – p. 34/41



Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [] ∈ L(r)

CFL 02, King’s College London – p. 35/41



Proofs about Rexp (4)
rev(0) def

= 0
rev(1) def

= 1
rev(c) def

= c
rev(r1 + r2)

def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

We can prove

L(rev(r)) = {s−1 | s ∈ L(r)}

by induction on r.
CFL 02, King’s College London – p. 36/41



Correctness Proof
for ourMatcher

We started from
s ∈ L(r)

⇔ [] ∈ Ders s (L(r))

if we can show Ders s (L(r)) = L(ders s r) we have
⇔ [] ∈ L(ders s r)
⇔ nullable(ders s r)
def
= matches s r

CFL 02, King’s College London – p. 37/41



Correctness Proof
for ourMatcher

We started from
s ∈ L(r)

⇔ [] ∈ Ders s (L(r))
if we can show Ders s (L(r)) = L(ders s r) we have

⇔ [] ∈ L(ders s r)
⇔ nullable(ders s r)
def
= matches s r

CFL 02, King’s College London – p. 37/41



Proofs about Rexp (5)

Let Der cA be the set defined as

Der cA def
= {s | c :: s ∈ A}

We can prove

L(der c r) = Der c (L(r))

by induction on r.

CFL 02, King’s College London – p. 38/41



Proofs about Strings

If we want to prove something, say a property
P(s), for all strings s then …

P holds for the empty string, and

P holds for the string c :: s under the assumption
that P already holds for s

CFL 02, King’s College London – p. 39/41



Proofs about Strings (2)

We can then prove

Ders s (L(r)) = L(ders s r)

We can finally prove

matches s r if and only if s ∈ L(r)

CFL 02, King’s College London – p. 40/41



Epilogue

0 2 4 6

·106

0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: a?{n} · a{n}

Scala V3
Scala V4

0 2 4 6 8

·106

0
5

10
15
20
25
30

n
tim

e
in

se
cs

Graph: (a∗)∗ · b

Scala V3
Scala V4

CFL 02, King’s College London – p. 41/41



Epilogue

0 2 4 6

·106

0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: a?{n} · a{n}

Scala V3
Scala V4

0 2 4 6 8

·106

0
5

10
15
20
25
30

n
tim

e
in

se
cs

Graph: (a∗)∗ · b

Scala V3
Scala V4

CFL 02, King’s College London – p. 41/41

def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match {
case (Nil, r) => r
case (s, ZERO) => ZERO
case (s, ONE) => if (s == Nil) ONE else ZERO
case (s, CHAR(c)) => if (s == List(c)) ONE else

if (s == Nil) CHAR(c) else ZERO
case (s, ALT(r1, r2)) => ALT(ders2(s, r2), ders2(s, r2))
case (c::s, r) => ders2(s, simp(der(c, r)))

}


