
Handout 6 (Parser Combinators)
In what follows we explain parser combinators. Their distinguishing feature is
that they are very easy to implement. However, they onlyworkwhen the gram-
mar to be parsed is not left-recursive and they are efficient only when the gram-
mar is unambiguous. It is the responsibility of the grammar designer to ensure
these two properties.

Parser combinators can deal with any kind of input as long as this input is
a kind of sequence, for example a string or a list of tokens. The general idea
behind parser combinators is to transform the input into sets of pairs, like so

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

In Scala parser combinators are functions of type

I ⇒ Set[(T, I)]

that is they take as input something of type I and return a set of pairs. The first
component of these pairs corresponds to what the parser combinator was able
to process from the input and the second is the unprocessed part of the input.
As we shall see shortly, a parser combinator might return more than one such
pair, the idea being that there are potentially several ways of how to interpret
the input. To simplify maĴers we will first look at the case where the input
to the parser combinators is just strings. As a concrete example, consider the
string

i f f o o t e s t b a r

Wemight have a parser combinator which tries to interpret this string as a key-
word (if) or as an identifier (iffoo). Then the output will be the set{(

i f , f o o t e s t b a r
)

,
(
i f f o o , t e s t b a r

)}
where the first pair means the parser could recognise if from the input and
leaves the rest as ‘unprocessed’ as the second component of the pair; in the
other case it could recognise iffoo and leaves testbar as unprocessed. If the
parser cannot recognise anything from the input, then parser combinators just
return the empty set {}. This will indicate something “went wrong”…or more
precisely, nothing could be parsed.

The idea of parser combinators is that we can easily build parser combina-
tors out of smaller components following very closely the structure of a gram-
mar. In order to implement this in an object-oriented programming language,
like Scala, we need to specify an abstract class for parser combinators. This
abstract class requires the implementation of the function parse taking an ar-
gument of type I and returns a set of type Set[(T, I)].

1

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I): Set[T] =
for ((head, tail) <- parse(ts); if (tail.isEmpty))

yield head
}

From the function parsewe can then “centrally” derive the function parse_all,
which just filters out all pairs whose second component is not empty (that is has
still some unprocessed part). The reason is that at the end of the parsing we are
only interested in the results where all the input has been consumed and no
unprocessed part is left over.

One of the simplest parser combinators recognises just a character, say c,
from the beginning of strings. Its behaviour can be described as follows:

• if the head of the input string startswith a c, then returns the set {(c, tail of s)},
where tail of s is the unprocessed part of the input string

• otherwise return the empty set {}

The input type of this simple parser combinator for characters is String and
the output type Set[(Char, String)]. The code in Scala is as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(sb: String) =

if (sb.head == c) Set((c, sb.tail)) else Set()
}

The parse function tests whether the first character of the input string sb is
equal to c. If yes, then it splits the string into the recognised part c and the
unprocessed part sb.tail. In case sb does not start with c then the parser
returns the empty set (in Scala Set()).

More interesting are the parser combinators that build larger parsers out of
smaller component parsers. For example the alternative parser combinator is
as follows: given two parsers, say, p and q, we apply both parsers to the input
(remember parsers are functions) and combine the output (remember they are
sets)

p(input) ∪ q(input)

In Scala we would implement alternative parser combinator as follows

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
}

2

The types of this parser combinator are polymorphic (we just have I for the
input type, and T for the output type). The alternative parser builds a new
parser out of two existing parsers p and q. Both need to be able to process
input of type I and return the same output type Set[(T, I)].1 The alternative
parser should run the input with the first parser p (producing a set of outputs)
and then run the same input with q. The result should be then just the union of
both sets, which is the operation ++ in Scala.

The alternative parser combinator already allows us to construct a parser
that parses either a character a or b, as

new AltParser(CharParser('a'), CharParser('b'))

Scala allows us to introduce some more readable shorthand notation for this,
like 'a' || 'b'. We can call this parser combinator with the strings

input strings output

a c →
{
(a , c)

}
b c →

{
(b , c)

}
c c → {}

We receive in the first two cases a successful output (that is a non-empty set). In
each case, either a or b is in the processed part, and c in the unprocessed part.
Clearly this parser cannot parse anything in the string cc, therefore the empty
set.

A bit more interesting is the sequence parser combinator. Given two parsers,
say, p and q, apply first the input to p producing a set of pairs; then apply q to
all the unparsed parts; then combine the results like

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

This can be implemented in Scala as follows:

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {

def parse(sb: I) =
for ((output1, u1) <- p.parse(sb);

(output2, u2) <- q.parse(u1))
yield ((output1, output2), u2)

}

1There is an interesting detail of Scala, namely the => in front of the types of p and q. They will
prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.

3

This parser takes as input two parsers, p and q. It implements parse as follows:
let first run the parser p on the input producing a set of pairs (output1, u1). The
u1 stands for the unprocessed parts left over by p. Let q run on these unpro-
cessed parts producing again a set of pairs. The output of the sequence parser
combinator is then a set containing pairs where the first components are again
pairs, namely what the first parser could parse together with what the second
parser could parse; the second component is the unprocessed part left over after
running the second parser q. Therefore the input type of the sequence parser
combinator is as usual I, but the output type is

Set[((T, S), I)]

Scala allows us to provide some shorthand notation for the sequence parser
combinator. We canwrite for example 'a' ~ 'b', which is the parser combina-
tor that first consumes the character a from a string and then b. Three examples
of this parser combinator are as follows:

input strings output

a b c →
{
((a , b), c)

}
b a c → {}
c c c → {}

A slightly more complicated parser is ('a' || 'b') ~ 'b' which parses as
first character either an a or b followed by a b. This parser produces the follow-
ing outputs.

input strings output

a b c →
{
((a , b), c)

}
b b c →

{
((b , b), c)

}
a a c → {}

Two more examples: first consider the parser ('a' ~ 'a') ~ 'a' and the in-
put aaaa:

input string output

a a a a →
{
(((a , a), a), a)

}
Notice how the results nest deeper and deeper as pairs (the last a is in the un-
processed part). To consume everything of this string we can use the parser
(('a' ~'a') ~ 'a') ~ 'a'. Then the output is as follows:

input string output

a a a a →
{
((((a , a), a), a), "")

}

4

This is an instance where the parser consumed completely the input, meaning
the unprocessed part is just the empty string.

Note carefully that constructing a parser such 'a' || ('a' ~ 'b')will re-
sult in a typing error. The first parser has as output type a single character (re-
call the type of CharParser), but the second parser produces a pair of characters
as output. The alternative parser is however required to have both component
parsers to have the same type. We will see later how we can build this parser
without the typing error.

The next parser combinator does not actually combine smaller parsers, but
applies a function to the result of a parser. It is implemented in Scala as follows

class FunParser[I, T, S]
(p: => Parser[I, T],
f: T => S) extends Parser[I, S] {

def parse(sb: I) =
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)

}

This parser combinator takes a parser p with output type T as one argument
as well as a function f with type T => S. The parser p produces sets of type
(T, I). The FunParser combinator then applies the function f to all the parser
outputs. Since this function is of type T => S, we obtain a parser with output
type S. Again Scala lets us introduce some shorthand notation for this parser
combinator. Therefore we will write p ==> f for it.

How to build parsers using parser combinators?

Implementing an Interpreter

5

