Homework 8

1. Write a program in the WHILE-language that calculates the factorial func-
tion.

write "factorial: ";

read n;

minusl := 1;

while n > 0 do {
minusl := minusl * n;
n :=n -1

I8

write "Result: ";
write minusl ;
write "\n"

2. What optimisations could a compiler perform when compiling a WHILE-
program?

* peephole optimisations (more specific instructions)

® common sub-expression elimination

* constant folding / constant propagation (that is calculate the
result of 3 4+ 4 already during compilation)

e tail-recursion optimisation cannot be applied to the WHILE
language because there are no recursive functions

3. What is the main difference between the Java assembler (as processed by
Jasmin) and Java Byte Code?

The main difference is that the j-files have symbols for places where
to jump, while class files have this resolved to concrete addresses
(or relative jumps). That is what the assembler has to generate.

4. Remember symbolic labels in the Jasmin-assembler are meant to be used
for jumps (like in loops or if-conditions). Assume you generated a Jasmin-
file with some redundant labels, that is some labels are not used in your
code for any jumps. For example L_begin and L_end are not used in the
following code-snippet:



L_begin:
ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd
L_end:

Do these redundant labels affect the size of the generated JVM-code? (Hint:
What are the labels translated to by the Jasmin-assembler?).

The answer is no. The reason is that assemblers calculate for labels
either relative or explicit adresses, which are then used in the JVM-
byte-code. Relative addresses are like “jump 10 bytes forward” or
"“12 bytes backward”. So additional labels do not increase the size
of the generated code.

5. Consider the following Scala snippet. Are the two functions is_even and
is_odd tail-recursive?

def is_even(n: Int) : Boolean = {
if (n == 0) true else is_odd(n - 1)
}
def is_odd(n: Int) : Boolean = {
if (n == 0) false
else if (n == 1) true else is_even(n - 1)

}

Do they cause stack-overflows when compiled to the JVM (for example
by Scala)?

Scala cannot generate jumps in between different methods (to
which functions are compiled to). So cannot eliminate the tail-
calls. Haskell for example can do this because it compiles the code
in a big "blob” inside a main-method (similar to the WHILE lan-

guage).

6. Explain what is meant by the terms lazy evaluation and eager evaluation.
Lazy evaluation only evaluates expressions when they are needed
and if they are needed twice, the results will be re-used. Eager

evaluation immediately evaluates expressions, for example if they
are arguments to function calls or allocated to variables.



7. (Optional) This question is for you to provide regular feedback to me:
for example what were the most interesting, least interesting, or confus-
ing parts in this lecture? Any problems with my Scala code? Please feel
free to share any other questions or concerns. Also, all my material is
erap imperfect. If you have any suggestions for improvement, I am very
grateful to hear.

If *you* want to share anything (code, videos, links), you are encouraged
to do so. Just drop me an email or send a message to the Forum.



