Compilers and
Formal Languages

Email:

Office Hour:
Location:
Slides & Progs:
Pollev:

christian.urban at kcl.ac.uk

Fridays 12 — 14

N7.07 (North Wing, Bush House)

KEATS
https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages

5 Grammars, Parsing

9 Optimisations
10 LLVM




While Tokens

WHILE_REGS = (("

' : KEYWORD) +

" : ID) +

': OP) +

" ¢ NUM) +

" ¢ SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

' WHITESPACE))*

E:cr-'c- w S 0 H =



The Goal of this Course

Write a compiler

lexer parser code gen

Today a lexer.



The Goal of this Course

Write a compiler

Today a lexer.

lexing = recognising words (Stone of Rosetta)



Regular Expressions

In programming languages they are often used to
recognise:

operands, digits

identifiers

numbers (non-leading zeros)
keywords

comments

http://www.regexper.com


http://www.regexper.com

write "
read n;
minusl
minus?2
while n

}s

write "

Lexing: Test Case

Fib";

0;
1;
> 0 do {
temp := minus2;
minus2 := minusl + minus2;
minusl := temp;
n :=n -1

Result";

write minus2



"if true then then 42 else +"

KEYWORD:

if, then, else,
WHITESPACE:

n ||’ \n,
IDENTIFIER:

LETTER - (LETTER + DIGIT + )*
NUM:

(NONZERODIGIT - DIGIT") + ©
OP:

+, -, *, %, <, <=
COMMENT :

/* « ~(ALL* - (*/) - ALL*) - */



"if true then then 42 else +"

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)



"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD (then),
NUM(42),
KEYWORD(else),
OP(+)



There is one small problem with the tokenizer. How
should we tokenize...?

-3
ID:
OP:

mn m_n
NUM:

(NONZERODIGIT - DIGIT*) + "@"
NUMBER::

NUM + ("-" - NUM)



The same problem with

(ab+a) - (¢ + bc)

and the string abc.



The same problem with

(ab+a) - (¢ + bc)

and the string abc.

Or, keywords are if etc and identifiers are letters
followed by “letters + numbers + _"*

if iffoo



POSIX: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.


http://www.haskell.org/haskellwiki/Regex_Posix

POSIX: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix


http://www.haskell.org/haskellwiki/Regex_Posix

POSIX: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

most posix matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

traditional lexers are fast, but hairy


http://www.haskell.org/haskellwiki/Regex_Posix

Sulzmann & Lu Lexer

We want to match the string abc using r+:

dera

r1_)r2



Sulzmann & Lu Lexer

We want to match the string abc using r+:

dera derb
rq ﬁ ry ﬁ rs



Sulzmann & Lu Lexer

We want to match the string abc using r+:

dera derb derc
rq ﬁ 5) ﬁ rs ﬁ V4



Sulzmann & Lu Lexer

We want to match the string abc using r+:

dera derb derc
(] — [) — 13— Nullable?



Sulzmann & Lu Lexer

We want to match the string abc using r:

dera derb derc
(] — [) — 13— Nullable?

|

Vg



Sulzmann & Lu Lexer

We want to match the string abc using r:

dera derb derc
(] — [) — 13— Nullable?

|

V3_V4

injc



Sulzmann & Lu Lexer

We want to match the string abc using r:

dera derb derc
(] — [) — 13— Nullable?

|

injb injc



Sulzmann & Lu Lexer

We want to match the string abc using r:

dera derb derc
V] — 1 > I3 > r, nullable?

|

Vi € Vv, 4 Z ; Vs

inja injb injc




Sulzmann & Lu Lexer

We want to match the string abc using r:

dera derb derc
V] — 1 > I3 > r, nullable?

N

Vi € Vv, 4 Z ; Vs

inja injb injc




Regexes and Values

Regular expressions and their corresponding values:

r

| *

v =

Empty

Char(c)
Seq(v1,v,)
Left(v)

Right(v)

Stars |]

Stars [vs, . .. v,]



abstract class Rexp
object ZERO extends Rexp
object ONE extends Rexp

case
case
case
case
case
case

class
class
class
class

CHAR(c: Char) extends Rexp
ALT(rl: Rexp, r2: Rexp) extends Rexp
SEQ(rl: Rexp, r2: Rexp) extends Rexp
STAR(r: Rexp) extends Rexp

abstract class Val
object Empty extends Val

case
case
case
case
case
case

class
class
class
class
class

Chr(c: Char) extends Val

Sequ(vl: Val, v2: Val) extends Val
Left(v: Val) extends Val

Right(v: Val) extends Val
Stars(vs: List[Val]) extends Val



I’zz ?
rs: (0-(b-c))+(1-c)
rg: (0- .

dera derb derc
I WD) > I3 3 r, nullable

T

V1 b V) V3 € V4

inja injb injc




ri: a-(b-c)

ry: 1(bC)

r3: (0-(b-c))+(1-¢)

rgg (0-(b-¢c))+((0-¢c)+1)

dera derb derc
r > I, > I3 3 r, nullable

NG

V] G V) 4 ZR ; V4

inja injb injc

vi:  Seq(Char(a),Seq(Char(b), Char(c)))
vo:  Seq(Empty, Seq(Char(b), Char(c)))
v3:  Right(Seq(Empty, Char(c)))

v4  Right(Right(Empty))




Flatten

Obtaining the string underlying a value:

|[Empty|

|Char(c)|
|Left(v)]
[Right(v)]
|Seq(v4,v2)|
|Stars [v1, ..., vn]|

def

def

def

def
def
def

I
[c]
V]
V]
Vil @ v, |

vi|@...@|v,|



ri: a-(b-c)
ry: 1- (b . C)
r3: (0-(b-c))+(1-¢)
rgg (0-(b-¢c))+((0-¢c)+1)
dera derb derc
r > I, > I3 3 r, nullable
l l l 1mkeps
V] G V) 4 ZR ; V4
inja injb inj c
Vq:

Vo
V3.
V4.

Seq(Char(a), Seq(Char(b), Char(c)))
Seq(Empty, Seq(Char(b), Char(c)))
Right(Seq(Empty, Char(c)))
Right(Right(Empty))




string:

mkeps (1)
mkeps (r1 +r,)

mkeps (ry - ry)
mkeps (r*)

Mkeps

Finding a (posix) value for recognising the empty

Empty

if nullable(ry)

then Left(mkeps(r,))

else Right(mkeps(r,))
Seq(mkeps(ry), mkeps(r,))
Stars [|



Inject

der c
e AL

V = Vier
inj c



Inject
Injecting (“Adding”) a character to a value

def

inj (c) c (Empty) = Charc

inj (ri +ry) c (Left(v)) = Left(injrycv)

inj (r1 +ry) ¢ (Right(v)) = Right(injrycv)

inj (r1-ry) c (Seq(vq,v2)) défSeq(inj ricvq,va)

inj (r1 - r,) ¢ (Left(Seq(vy,v2))) = Seq(injry cvs, v3)

inj (r1 - ry) ¢ (Right(v)) < Seq(mkeps(r,),injr, cv)
inj (r*) c (Seq(v, Starsvs)) = Stars (injrcv :: vs)

inj: 1st arg — a rexp; 2nd arg — a character; 3rd arg — a value
result — a value



inj (c) ¢ (Empty) = Charc



inj (ri +r2) c (Left(v)) = Left(injricv)
inj (r1 + r2) ¢ (Right(v) ) = Right(injr, cv)



inj (ry-ry) c(Seq(vq, 1)) dl:efSeq(injh cvq, 1)
inj (r1 - ry) c (Left(Seq(vq,v2))) def Seq(injrycvq,vs)
inj (ry - ra) c (Right(v)) = Seq(mkeps(ry),injrycv)

[derc (r1-r) defif nullable(ry) then (dercry) - ry + dercry else (dercrq) - rp ]




inj (r*) ¢ (Seq(v, Starsvs)) = Stars (injrcv :: vs)



Lexing

lexr[] = ifnullable(r) then mkeps(r) else error
def . .
lexra :: s =injralex(der(a,r),s)
lex: returns a value

dera derb derc
r > 2 > 13 > 1 nullable

|11 b

Vq ( vy ( V3 ( Vg




Records

@ newregex: (x :r)  new value: Rec(x,v)

(id : I’,‘d)
(key : riey)



Records

new regex: (x : r)  new value: Rec(x,v)
nullable(x : r) = nullable(r)

derc(x:r) = dercr

mkeps(x : r) = Rec(x, mkeps(r))

inj (x : r) cv = Rec(x, injrcv)

(id : I’,‘d)
(key : riey)



Records

new regex: (x : r)  new value: Rec(x,v)

nullable(x : r) = nullable(r)
derc(x:r) = dercr
mkeps(x : r) = Rec(x, mkeps(r))

inj (x : r) cv = Rec(x, injrcv)

for extracting subpatterns (z : ((x : ab) + (y : ba))

(id : I’,'d)
(key : riey)



@ Aregular expression for email addresses
(name: [a-20-9__.—]")-@-
(domain: [a-z0-9 —] ™) -.-
(top_level: [a-z ] 16})

christian.urban@kcl.ac.uk

@ the result environment:
[(name : christian.urban),
(domain : kcl),
(top_level : ac.uk)]



While Tokens

WHILE_REGS = (("

' : KEYWORD) +

" : ID) +

': OP) +

" ¢ NUM) +

" ¢ SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

' WHITESPACE))*

E:cr-'c- w S 0 H =



Simplification
If we simplify after the derivative, then we are
building the value for the simplified regular
expression, but not for the original regular
expression.

dera derb der c
r > 1, > I3 > r4 nullable

e

V1( Vz( V3(_V4

inja injb injc




Simplification
If we simplify after the derivative, then we are
building the value for the simplified regular
expression, but not for the original regular
expression.

dera derb der c
r > 1, > I3 > r4 nullable

e

V1( Vz( V3(_V4

inja injb injc

(0-(b-¢c))+((0-¢c)+1)—1



Normally we would have
(0-(b-¢c))+((0-¢c)+1)

and answer how this regular expression matches the
empty string with the value

Right(Right(Empty))

But now we simplify this to 1 and would produce
Empty (see mkeps).



Rectification

rectification
functions:

A fov-Seq(fi v, f Empty)
Af1f,v. Seq(fr Empty, f,v)
Afifov. Left(fiv)

Afif v. Right(f,v)
Afifov. Left(fiv)



Rectification

0
0
r
r
r
r
r

old simp returns a rexp;

rectification
functions:

AMifov.Seq(frv, f> Empty)
Af1f,v. Seq(fr Empty, f,v)
A fav. Left(fiv)

Afif v. Right(f,v)
Afifov. Left(fiv)

new simp returns a rexp and a rectification function.



Rectification |+

simp(r):
caser =r;+n
let (ris,f15) = simp(ry)
(r25/f25> = Simp(h)
case ry; = 0: return (15, Av. Right(fo5(v)))
case rps = 0: return (rqs, Av. Left(f15(v)))
case ris = ryg: return (ri5, Av. Left(fis(v)))
otherwise: return (rqs + ras, faie (f1s, fos))

falt(fhfZ) dZEf
Av. casev = Left(v'): return Left(f;(V'))

case v = Right(v/): return Right(f,(v'))



def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALT(rl1l, r2) => {
val (rls, f1s) simp(ril)
val (r2s, f2s) = simp(r2)
(rls, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (rls, F_LEFT(f1ls))
case _ =>
if (rls == r2s) (rls, F_LEFT(f1s))
else (ALT (rls, r2s), F_ALT(f1ls, f2s))

}
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Vval => Val) =
(v:val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(fi(v)) }



Rectification -

simp(r):...
caser =ry-r,
let (ris,f15) = simp(ry)
(ras fos) = simp(r,)
case ri; = 0: return (0, forror)
case rps = 0: return (0, forror)
case ri; = 1: return (rys, Av. Seq(fis(Empty), fos(v)))
case rps = 1:return (rqs, Av. Seq(fis(v), fos (Empty) )
otherwise: return (s - ras, feeq (fis, f2s) )

fealf f2) €
Av. casev = Seq(vq,v,): return Seq(fi(v1),£2(v2))



def simp(r: Rexp): (Rexp, Val => Val) = r match {
case SEQ(rl1, r2) => {

val (rls, f1s) simp(ril)

val (r2s, f2s) = simp(r2)

(rls, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ Emptyl(fls, f2s))
case (_, ONE) => (rls, F_SEQ_Empty2(fls, f2s))
case _ => (SEQ(rls,r2s), F_SEQ(fls, f2s))

ool

def F_SEQ _Emptyl(fl: Vval => Val, f2: Val => Val)
(v:Vval) => Sequ(f1(Empty), f2(v))

def F_SEQ_Empty2(fl: Val => Val, f2: Val => Val)
(v:Vval) => Sequ(fi(v), f2(Empty))

def F_SEQ(fl: Val => Val, f2: Vval =»> Val) =
(v:Val) => v match {

case Sequ(vl, v2) => Sequ(fil(vl), f2(v2)) }



Rectification Example

(b-c)+(0+1)—(b-c)+1



Rectification Example

(boc) +(0+1) = (b-c) +1



Rectification Example

(boc) +(0+1) = (b-c) +1

Av.w
Av.Right(v)

s
fo



Rectification Example

(b-c)+(0+1)—(b-c)+1

Av.v
Av.Right(v)

fs1
fsz

falt(fs11f52) d:ef
Av. casev = Left(v'): return Left(f; (V')
v

case v = Right(v'): return Right(f,, (v'))



Rectification Example

(b-c)+(0+1)—(b-c)+1

Av.y
Av.Right(v)

fs1
fo

Av. casev = Left(v'): return Left(V')
case v = Right(v'): return Right(Right(v"))



Rectification Example

(b-c)+ (04+1) > (b-c) +1

Av.v
Av.Right(v)

fs1
fsz

Av. casev = Left(v'): return Left(V)
case v = Right(v'): return Right(Right(v"))

mkeps simplified case: Right(Empty)
rectified case: Right (Right (Empty))



Lexing with Simplification
lexr[] = ifnullable(r) then mkeps(r) else error

lexrc s = let (¥, frect) = simp(der(c,r))
injrc (frect(lex(r',s)))

dera derb der c
ri q ry q rs ﬁ rg nu”able

|1

V1hV2hV3hV4

inja injb injc



Environments

Obtaining the “recorded”

parts of a value:

= env(v) @env(v,)
= env(vy)@...@env(vy,)

(x :|v|) : env(v)

(
= env(v

(

(



While Tokens

def

WHILE_REGS = (

(
(
(
(
("
(
(
(

£ CT VSO0 H X

: KEYWORD) +

" : ID) +

"1 0OP)+

" ¢ NUM) +

" : SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

"o WHITESPACE))"<



"if true then then 42 else +"

KEYWORD (if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)



"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)



Lexer: Two Rules

@ Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as next token.

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.



Environments

parts of a value:

Obtaining the “recorded”

env(v)

env(v)

env(v) @env(v,)
env(vi) @...@env(v,)

(x :|v|) : env(v)



While Tokens

def

WHILE_REGS = (

(
(
(
(
("
(
(
(

£ CT VSO0 H X

: KEYWORD) +

" : ID) +

"1 0OP)+

" ¢ NUM) +

" : SEMI) +

' : (LPAREN + RPAREN)) +
' : (BEGIN + END)) +

"o WHITESPACE))"<



"if true then then 42 else +"

KEYWORD (if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
KEYWORD (then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)



"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



CFL 04, King’s College London — p. 44/53



Week 3 Feedback

Submitted answers: 21
Questions: 12

(Programme) Which degree programme are you studying?

M Responses

BSc Computer Science

BSc Computer Science with Management

> Gomputer Science with Management and a Year Abroad
>mputer Science with Management and a Year in Industry
BSc Computer Science with a Year Abroad

BSc Computer Science with a Year in Industry

MSci Computer Science

BSc Computer Science (Artificial Intelligence)

BEng Electronic Engineering

MEng Electronic Engineering

MSc Advanced Computing

MSc Advanced Software Engineering

MSc Artificial Intelligence

MSc Gomputational Finance

MSc Cyber Security

MSc Data Science

MSc Urban Informatics

Other

Study Abroad

o
~
®
s
@
ey
~



(AppropriatePace)

ceaches at a pace that is:

- Fsonses

o

0

Tearly)

@sore

P —

@ assoree

1 svongy assgree

(keats)...provides useful information on KEATS

@ asaree

[ p——

- sonses



(objectives)

© stonghy sarse

[Ep——

pep—

) stongy sssqrse

(amethods)

[T
’ : N ° 4 0 2 1
(forum)
—esporsos




(Audible) The video lectures and other content on KEATS are helpful

(faciltes) The fiv teaching sessions are helpful

e -

[ETe—




e Thank you for your hand out. | took your advice and finally
read the ho4 before the lecture videos. It was very smooth
to read, but at times it was hard to understand. But knowing
my friendly lecturer would explain the concepts in the
videos | carried on. Although it was a bit painful, new
information always is, and a bit boring at times, it’s probably
my bad attention span. | finished it and found it quite fun,
probably the most approachable and fun technical handout
I've read so far. Reading it before the videos encouraged me
to stay on it because | didn’t assume | understood the
content and the anticipation of the unknown was fun.



things are going well initially, but in week3 i am really lost, each 30 mins video
took me hours to understand, things are too abstract, wish there are more
explanations

The LGTs kind of just repeat the information from the lectures. | think they
would be more beneficial if you could explain certain topics in more detail and
go through more examples.

The room is somehow always either too warm or too cold.

Module content is enjoyable and interesting. Even with difficult part of
contents, Dr Urban provides clear explanations.



e Thein person lectures could be a bit faster, | think more focus on
questions would be useful rather than repeating the videos.

e The teacher explains the material very well and is able to answer most
questions during the large group tutorials. | really like the teacher’s
enthusiasm; throwing in little jokes from time to time and referring to
the history of compilers makes me more interested in the subject and
inspires me to delve deeper into it. Since | am an MSc student, | did not
take any previous Level 6 modules, which the teacher refers to quite
often. However, the teacher provides enough basic knowledge, even if
you haven’t learned about these topics before. The module is conducted
using a flipped-classroom system, so the 2-hour lecture every Friday is
spent revising’ the material that was provided in the videos. Personally, |
like this approach as it helps reinforce important aspects of both current
and previous lessons.



Would appreciate some time in the LGTs to go over specific examples of
questions from the slides.

The recorded content is too long. Also, the Sgt room (Monday 2-3 with
Harry) is really small compared to the students who show up.

hopefully there will be solution or any tutorials / lectures for cw1

Normally, | wouldn’t have such an audacious request as this. However,
the lecture hall we were assigned is absoluely terrible; this is mainly
because indivduals at the back are so far away from the front that they
think they can get away with talking loudly and being distracting. If that
isn't possible, then can the wall sockets on the right side at least work.



If you want to master something;teach it.

- Richard Feynman




