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Generalization

Live variable analysis and available expressions analysis are similar

• Define some information that they need to compute

• Build constraints for the information

• Solve constraints iteratively:
- Information always “increases” during iteration
- Eventually, it reaches a fixed point

We would like a general framework

• Framework applicable to many other analyses

• Live variable/available expressions instances of the framework
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Data-flow Analysis Framework

Data-flow analysis:

• Common framework for many compiler analyses

• Computes some information at each program point

• The computed information characterizes all possible executions of
the program

Basic methodology:

• Describe information about the program using an algebraic structure
called a lattice

• Build constraints that show how instructions and control flow
influence the information in terms of values in the lattice

• Iteratively solve constraints

We start by defining lattices and see some of their properties
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Partial Orders

A relation 4 ⊆ D ×D on a set D is a partial order iff 4 is

1. Reflexive: x 4 x

2. Anti-symmetric: x 4 y and y 4 x⇒ x = y

3. Transitive: x 4 y and y 4 z ⇒ x 4 z

• A set with a partial order is called a poset

Examples:

• If S is a set then (P (S),⊆) is a poset

• (Z,≤) is a poset
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Hasse Diagram

• If x 4 y and x 6= y, x is predecessor of y
• x immediate predecessor of y: if x 4 y and there is no z such that

x 4 z 4 y

Hasse diagram:

• Directed acyclic graph where the vertices are elements of the set D
• There exists an edge x→ y if x is an immediate predecessor of y

Example.

• x 4 y , y 4 t , z 4 t , x 4 z , x 4 t

x 4 x , y 4 y , z 4 z , t 4 t

x

y z

t
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Exercise

• Dn = {all divisors of n}, with d 4 d′ ⇔ d | d′

• Draw the Hasse diagram for D12 = {1, 2, 3, 4, 6, 12}

1

2 3

4 6

12

D12 = {1, 2, 3, 4, 6, 12}
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Total Order

• Partial order: no guarantee that all elements can be compared to
each other

• Total order (linear order): If for any two elements x and y at least
one of x 4 y or y 4 x is true

• (N,≤) is total order
• Hasse diagram is one-track

1

2

3

4

...
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Subset Bounds

• Let (X,4) be a poset and let A ⊆ X be any subset of X

• An element, b ∈ X, is a lower bound of A iff b 4 a for all a ∈ A

• An element, m ∈ X, is an upper bound of A iff a 4 m for all a ∈ A

• An element, b ∈ X, is the greatest lower bound (glb) of A iff the set of
lower bounds of A is nonempty and if b is the greatest element of this set

• An element, m ∈ X, is the least upper bound (lub) of A iff the set of
upper bounds of A is nonempty and if m is the least element of this set

A

Upper Bounds

lub

Upper Bounds

glb

A
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Exercise

Find lower/upper bounds and glb/lub for these sets: {b, d},{a, c},{d, e, f}

a b c

d e f

g h i

{b,d}:

• Lower bounds: {b} glb: b

• Upper bounds: {d, g} lub: d because d 4 g

{a, c}:

• Lower bounds: {} no glb

• Upper bounds: {h} lub: h

{d, e,f}:

• Lower bounds: {} no glb

• Upper bounds: {} no lub
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Lattice

Poset (D,4) is called a lattice if

• For any x, y ∈ D, {x, y} has a lub, which is denoted as x t y (join)

• For any x, y ∈ D, {x, y} has a glb, which is denoted as x u y (meet)

Example.

• For (P (B),⊆): x u y = x ∩ y , x t y = x ∪ y

• For (Z,≤): x u y = min(x, y) , x t y = max(x, y)
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Complete Lattice

• Complete lattice is a poset in which any subset (finite or infinite)
has a glb and a lub
• Every finite lattice is complete

• A complete lattice must have:
• a least element ⊥
• a greatest element >

Example: Power Set Lattice

> = {a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

⊥ = {}
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Exercise

• Which are the following posets are lattices?

no yes X no

• To show a poset is not a lattice, it suffices to find a pair that does
not have an lub or a glb

• Two elements that don’t have an lub or glb cannot be comparable
• View the upper/lower bounds on a pair as a sub-Hasse diagram:

If there is no greatest/least element in this sub-diagram,
then it is not a lattice
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Relation To Data-flow Analysis

• Information computed by e.g. live variable and available expressions
analyses can be expressed as elements of lattices

• If x ≤ y then x is less or equally precise as y
• i.e., x is a conservative approximation of y

• Top >: most precise, best case information

• Bottom ⊥: least precise, worst case information

• Merge function = glb (meet) on lattice elements
• Most precise element that is a conservative approximation of both

elements
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Example: Available Expressions

{x+ y, x× y, z < x+ y}

{x+ y, x× y} {x+ y, z < x+ y} {x× y, z < x+ y}

{x+ y} {x× y} {z < x+ y}

{}

>

⊥

• Trivial answer with zero information, allows no optimization: ⊥ = {}
(No expression available)
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Example: Live Variables

• If V is the set of all variables in a program and P the power set of V ,
then (P,⊇) is a lattice

• Sets of live variables are elements of this lattice

• Trivial answer with zero information, allows no optimization: ⊥ = V

(All variables are live, nothing is dead)
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Using Lattices

• Assume information we want to compute in a program is expressed
using a lattice L

• To compute the information at each program point we need to:

- Determine how each statement in the program changes the
information

- Determine how information changes at join/split points in the
control flow
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Transfer Functions

• Data-flow analysis defines a transfer function F : L→ L for each
statement in the program

• Describes how the statement modifies the information

• Consider in(S) as information before S,

and out(S) as information after S

• Forward analysis: out(S) = F (in(S))

• Backward analysis: in(S) = F (out(S))
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Sequential Composition

• Consider statements S = S1;...;Sn with transfer functions F1,...,Fn

• in(S) is information at the beginning

• out(S) is information after at the end

• Forward analysis:

out(S) = Fn(· · · (F1(in(S)))) = Fn ◦ · · · ◦ F1(in(S))

• Backward analysis:

in(S) = F1(· · · (Fn(out(S)))) = F1 ◦ · · · ◦ Fn(out(S))
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Split/Join Points

• Data-flow analysis uses meet/join operations at split/join points in
the control flow

• Forward analysis:

in(S) =
l
{out(S′)|S′ ∈ pred(S)}

• Backward analysis:

out(S) =
l
{in(S′)|S′ ∈ succ(S)}
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