

CSCI 742 - Compiler Construction

Lecture 35 Data-flow Analysis Framework Instructor: Hossein Hojjat

April 20, 2018

Live variable analysis and available expressions analysis are similar

- Define some information that they need to compute
- Build constraints for the information
- Solve constraints iteratively:
	- Information always "increases" during iteration
	- Eventually, it reaches a fixed point

We would like a general framework

- Framework applicable to many other analyses
- Live variable/available expressions instances of the framework

Data-flow Analysis Framework

Data-flow analysis:

- Common framework for many compiler analyses
- Computes some information at each program point
- The computed information characterizes all possible executions of the program

Basic methodology:

- Describe information about the program using an algebraic structure called a lattice
- Build constraints that show how instructions and control flow influence the information in terms of values in the lattice
- Iteratively solve constraints

We start by defining lattices and see some of their properties

A relation $\preccurlyeq \subseteq D \times D$ on a set D is a **partial order** iff \preccurlyeq is

- 1. Reflexive: $x \preccurlyeq x$
- 2. Anti-symmetric: $x \preccurlyeq y$ and $y \preccurlyeq x \Rightarrow x = y$
- 3. Transitive: $x \preccurlyeq y$ and $y \preccurlyeq z \Rightarrow x \preccurlyeq z$
- A set with a partial order is called a **poset**

Examples:

- If S is a set then $(P(S), \subseteq)$ is a poset
- (\mathbb{Z}, \leq) is a poset

Hasse Diagram

- If $x \preccurlyeq y$ and $x \neq y$, x is predecessor of y
- x immediate predecessor of y: if $x \preccurlyeq y$ and there is no z such that

$$
x \preccurlyeq z \preccurlyeq y
$$

Hasse diagram:

- Directed acyclic graph where the vertices are elements of the set D
- There exists an edge $x \rightarrow y$ if x is an immediate predecessor of y

Example.

• $x \preccurlyeq y$, $y \preccurlyeq t$, $z \preccurlyeq t$, $x \preccurlyeq z$, $x \preccurlyeq t$ $x \preccurlyeq x$, $y \preccurlyeq y$, $z \preccurlyeq z$, $t \preccurlyeq t$

- $D_n = \{$ all divisors of $n\}$, with $d \preccurlyeq d' \Leftrightarrow d \mid d'$
- Draw the Hasse diagram for $D_{12} = \{1, 2, 3, 4, 6, 12\}$

- $D_n = \{$ all divisors of $n\}$, with $d \preccurlyeq d' \Leftrightarrow d \mid d'$
- Draw the Hasse diagram for $D_{12} = \{1, 2, 3, 4, 6, 12\}$

 $D_{12} = \{1, 2, 3, 4, 6, 12\}$

Total Order

- Partial order: no guarantee that all elements can be compared to each other
- Total order (linear order): If for any two elements x and y at least one of $x \preccurlyeq y$ or $y \preccurlyeq x$ is true

. . .

- (N, \leq) is total order
- Hasse diagram is one-track

1 $\frac{2}{\uparrow}$ 3 4

Subset Bounds

- Let (X, \preccurlyeq) be a poset and let $A \subseteq X$ be any subset of X
- An element, $b \in X$, is a **lower bound** of A iff $b \preccurlyeq a$ for all $a \in A$
- An element, $m \in X$, is an upper bound of A iff $a \preccurlyeq m$ for all $a \in A$
- An element, $b \in X$, is the **greatest lower bound** (glb) of A iff the set of lower bounds of A is nonempty and if b is the greatest element of this set
- An element, $m \in X$, is the **least upper bound** (lub) of A iff the set of upper bounds of A is nonempty and if m is the least element of this set

Find lower/upper bounds and glb/lub for these sets: $\{b, d\}, \{a, c\}, \{d, e, f\}$

Find lower/upper bounds and glb/lub for these sets: $\{b, d\}, \{a, c\}, \{d, e, f\}$

 ${b, d}$:

- Lower bounds: ${b}$ glb: b
- Upper bounds: $\{d, g\}$ lub: d because $d \preccurlyeq g$

Find lower/upper bounds and glb/lub for these sets: $\{b, d\}, \{a, c\}, \{d, e, f\}$ ${b, d}$:

• Lower bounds: ${b}$ glb: b

• Upper bounds: $\{d, g\}$ lub: d because $d \preccurlyeq g$

 ${a, c}$:

- Lower bounds: {} no glb
- Upper bounds: $\{h\}$ lub: h

Find lower/upper bounds and glb/lub for these sets: $\{b, d\}, \{a, c\}, \{d, e, f\}$ ${b, d}$:

• Lower bounds: ${b}$ glb: b

• Upper bounds: $\{d, g\}$ lub: d because $d \preccurlyeq g$

 ${a, c}$:

- Lower bounds: {} no glb
- Upper bounds: $\{h\}$ lub: h

 ${d, e, f}$:

- Lower bounds: {} no glb
- Upper bounds: {} no lub

Poset (D, \preccurlyeq) is called a lattice if

- For any $x, y \in D$, $\{x, y\}$ has a lub, which is denoted as $x \sqcup y$ (join)
- For any $x, y \in D$, $\{x, y\}$ has a glb, which is denoted as $x \sqcap y$ (meet)

Example.

- For $(P(B), \subseteq)$: $x \sqcap y = x \cap y$, $x \sqcup y = x \cup y$
- For (\mathbb{Z}, \leq) : $x \sqcap y = min(x, y)$, $x \sqcup y = max(x, y)$

Complete Lattice

- Complete lattice is a poset in which any subset (finite or infinite) has a glb and a lub
	- Every finite lattice is complete
- A complete lattice must have:
	- a least element ⊥
	- \bullet a greatest element \top
- Example: Power Set Lattice

- To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb
- Two elements that don't have an lub or glb cannot be comparable
- View the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no greatest/least element in this sub-diagram, then it is not a lattice

- To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb
- Two elements that don't have an lub or glb cannot be comparable
- View the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no greatest/least element in this sub-diagram, then it is not a lattice

- To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb
- Two elements that don't have an lub or glb cannot be comparable
- View the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no greatest/least element in this sub-diagram, then it is not a lattice

- To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb
- Two elements that don't have an lub or glb cannot be comparable
- View the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no greatest/least element in this sub-diagram, then it is not a lattice
- Information computed by e.g. live variable and available expressions analyses can be expressed as elements of lattices
- If $x \leq y$ then x is less or equally precise as y
	- i.e., x is a conservative approximation of y
- Top \top : most precise, best case information
- Bottom ⊥: least precise, worst case information
- Merge function $=$ glb (meet) on lattice elements
	- Most precise element that is a conservative approximation of both elements

Example: Available Expressions

• Trivial answer with zero information, allows no optimization: $\bot = \{\}$ (No expression available)

- If V is the set of all variables in a program and P the power set of V , then (P, \supseteq) is a lattice
- Sets of live variables are elements of this lattice
- Trivial answer with zero information, allows no optimization: $\bot = V$ (All variables are live, nothing is dead)
- Assume information we want to compute in a program is expressed using a lattice L
- To compute the information at each program point we need to:
- Determine how each statement in the program changes the information
- Determine how information changes at join/split points in the control flow
- Data-flow analysis defines a transfer function $F: L \to L$ for each statement in the program
- Describes how the statement modifies the information
- Consider $in(S)$ as information before S,

and $out(S)$ as information after S

- Forward analysis: $out(S) = F(in(S))$
- Backward analysis: $in(S) = F(out(S))$
- Consider statements $S = S_1; \ldots; S_n$ with transfer functions F_1, \ldots, F_n
- $in(S)$ is information at the beginning
- \bullet out(S) is information after at the end
- Forward analysis:

$$
out(S) = F_n(\cdots(F_1(in(S)))) = F_n \circ \cdots \circ F_1(in(S))
$$

• Backward analysis:

$$
in(S) = F_1(\cdots(F_n(out(S)))) = F_1 \circ \cdots \circ F_n(out(S))
$$

- Data-flow analysis uses meet/join operations at split/join points in the control flow
- Forward analysis:

$$
\mathit{in}(S) = \bigcap \{ \mathit{out}(S') | S' \in \mathit{pred}(S) \}
$$

• Backward analysis:

$$
\mathit{out}(S) = \bigcap \{ \mathit{in}(S') | S' \in \mathit{succ}(S) \}
$$