
CSCI 742 - Compiler Construction

Lecture 31
Introduction to Optimizations

Instructor: Hossein Hojjat

April 11, 2018

What Next?

• At this point we can generate bytecode for a given program

• Next: how to generate better code through optimization

• Most complexity in modern compilers is in their optimizers

• This course covers some straightforward optimizations

• There is much more to learn!

“Advanced Compiler Design and Implementation” (Whale Book)
by Steven Muchnick

• 10 chapters (∼ 400 pages) on optimization techniques

• Maybe an independent study? ¨̂

1

Goal of Optimization

• Optimizations: code transformations that improve the program

• Must not change meaning of program to behavior not allowed by
source code

• Different kinds

- Space optimizations: reduce memory use

- Time optimizations: reduce execution time

- Power optimization: reduce power usage

2

Why Optimize?

• Programmers may write suboptimal code to make it clearer

• Many programmers cannot recognize ways to improve the efficiency

Example.

- Assume a is a field of a class

- a[i][j] = a[i][j] + 1; 18 bytecode instructions

(gets the field a twice)

- a[i][j]++; 12 bytecode instructions

(gets the field a once)

• High-level language may make some optimizations inconvenient or
impossible to express

3

Where to Optimize?

• Usual goal: improve time performance

• Problem: many optimizations trade off space versus time

Example.
Loop unrolling here reduces the number of iterations from 100 to 50

for (i = 0; i < 100; i++)

f ();

for (i = 0; i < 100; i += 2) {

f ();

f ();

}

4

Where to Optimize?

• Usual goal: improve time performance

• Problem: many optimizations trade off space versus time

• Loop unrolling increases code space, speeds up one loop

• Frequently-executed code with long loops:
Preferably unroll the loop

• Optimize code execution time at expense of space

• Infrequently-executed code:
• Optimize code space at expense of execution time
• Save instruction cache space

• Want to optimize program hot spots

4

Writing Fast Programs

• Design for locality and few operations

• Use the right algorithm and data structures

• Turn on optimization and use a profiler (e.g. JProfiler) to figure out
hot spots

• Tweak source code until optimizer does “the right thing”

• Understanding optimizers helps!

5

Common Optimizations

• Constant Propagation

• Constant Folding

• Algebraic Simplification

• Unreachable Code Elimination

• Dead Code Elimination

• Function Inlining

• Copy Propagation

• Common Subexpression Elimination

• Loop-invariant Code Motion

• Strength Reduction

6

Constant Propagation

• If value of variable is known to be a constant, replace use of variable
with constant

• Value of variable must be propagated forward from point of assignment

Example.

n = 10;

c = 5;

for (int i=0; i<n; i++) {

s = s + i*c;

}

• Replace n, c

for (int i=0; i<10; i++) {

s = s + i*5;

}

7

Constant Folding

• If operands are known at compile time, evaluate at compile time
when possible

float x = 2.1 * 2; ⇒ float x = 4.2;

• Useful at every stage of compilation

• Constant expressions are created by translation and by optimization

a = 7;
b = 2;
...
x = 7 - 2;
while(x < 10){
...
}

a = 7;
b = 2;
...
x = 5;
while(x < 10){
...
}

a = 7;
b = 2;
...
x = a - b;
while(x < 10){
...
}

Constant

Propagation

Constant

Folding

8

Constant Folding Control Structures

if (true) S ⇒ S

if (false) S ⇒ {}

if (true) S else S’ ⇒ S

if (false) S else S’ ⇒ S’

while (false) S ⇒ {}

Example.

if (2 > 3) S ⇒ if (false) S ⇒ {}

9

Algebraic Simplification

• More general form of constant folding: take advantage of
simplification rules

Example: Identities

a * 1 ⇒ a a * 0 ⇒ 0 a + 0 ⇒ a

b || false ⇒ b b && true ⇒ b

b || true ⇒ true b && false ⇒ false

Example: Reassociation

Reassociate commutative expressions in an order that is better for
e.g. constant folding

(a + 2) + 2 ⇒ a + (2 + 2) ⇒ a + 4

• Must be careful with floating point and with overflow
• Algebraic rules may give wrong or less precise answers

10

Unreachable Code Elimination

• Remove code that will never be executed regardless of the values of
variables at run time

• Reductions in code size improve cache, TLB performance

public int f() {

return 0;

int i = 0; // Unreachable code

}

• Unreachability is a control-flow property:

“May control ever arrive at this point?”

11

Dead Code Elimination

• If effect of a statement is never observed, eliminate the statement

x = y - 1;

y = 5;

x = z + 1;

⇒ y = 5;

x = z + 1;

• Variable is dead if value is never used after definition

• Eliminate assignments to dead variables

• Other optimizations may create dead code

• Deadness is a data-flow property:

“May this data ever arrive anywhere?”

12

Function Inlining

• Replace a function call with the body of the function

int max(int a, int b) {

return a>b ? a : b;

}

int x = max(5,4);

⇒

int x = 5>4 ? 5 : 4;

• May need to rename variables to avoid name capture:
same name happen to be in use at both the caller and inside the
callee for different purposes

• How about recursive functions?

13

Copy Propagation

• Like constant propagation, instead of constant a variable is used

• After assignment x = y, replace subsequent uses of x with y

• Replace until x is assigned again

• May make x a dead variable, result in dead code

x = y;

if (x > 1)

x = x * f(x - 1);

⇒
x = y;

if (y > 1)

x = y * f(y - 1);

14

Common Subexpression Elimination

• If program computes same expression multiple time, can reuse the
computed value

• Example:

a = b+c;

c = b+c;

d = b+c;

⇒
a = b+c;

c = a;

d = b+c;

• Common subexpressions also occur in code generation

a[i+1] = b[i+1] + 1;

• In a language like C need to compute memory offset for
multi-dimensional arrays

a[i][j] = b[i][j]+1; // offset = i * #columns + j

15

Loop-invariant Code Motion

• If a statement or an expression does not change during loop, and
has no externally-visible side effect, can move before loop

Example.

• Identify invariant expression:

for(i=0; i<n; i++)

a[i] = a[i] + x*y;

• Move the expression out of the loop

int c = x*y;

for(i=0; i<n; i++)

a[i] = a[i] + c;

16

Strength Reduction

• Replace expensive operations (*,/) by cheap ones (+,-) via
dependent induction variable

• Induction variable: loop variable whose value is depends linearly on
the iteration number

for (int i = 0; i < n; i++) {

a[i*3] = i;

}

int j = 0;

for (int i = 0; i < n; i++) {

a[j] = i;

j = j + 3;

}

17

