CSCI 742 - Compiler Construction

Lecture 1
Course Overview
Instructor: Hossein Hojjat

January 17, 2018

What is a Compiler?

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING."

HEY! GET BACK
TO WORKY

E

= ‘
3

e Compiler is a program that translates high-level programs
into equivalent low-level programs

Source Program ——= Com pi|er ———=Target Program

Error (Warning)

e What is this course about?

e This course is about “compiler construction”:
1- you will learn how to construct compilers (theory)

2- you will construct your own compiler (practice)

Example: Java Compiler

while (x I=y) {
if (x>y)
X=X-Yy;
else
y=y-x
b

System.out.println(x);

javac GCD.java
javap -¢c GCD

iload_1
iload_2
if_icmpeq 31

: iload_1

: iload_2

: if_icmple 24
: iload_1

: iload_2

: isub

: istore_1

: goto 7
: iload_2

: iload_1

: isub

: istore_2

: goto 7
: getstatic #2
: iload_1

: invokevirtual #3

e You will implement a compiler for a small language
e (syntax similar to Java)

// System.out

// println

Source Code vs. Machine Code

while (x I=y) { Source Code:

if (x >y) e Written in high-level programming language (e.g. Java)
X=X e Human-readable notation

else i .
¥ = o5 e Expressive: variety of constructs to represent

computations

e Redundant: helps programmers avoid errors

©)=~

iload_1
iload_2
9: if_icmpeg 31
Pl Assembly (Machine) Code:

13: iload_2
14: if_icmple 24
17: iload_1
18: iload_2

e Optimized for hardware execution

e Basic commands that move bits around

19: isub))

20: istore_1 in registers and memory

21: goto 7

24: iload 2 e Redundancy decreased

25: iload_1 .

b6, ;ub - e Information about source code structure lost

27: istore_2
28: goto 7 4

From High-level to Low-level Code

Source Code

Compiler

?

Machine Code

e Compiler translates a high-level programming
language to a low-level programming language

e How does a compiler work?

From High-level to Low-level Code

Source Code

e Compiler translates a high-level programming

language to a low-level programming language

e How does a compiler work?

e Compiler uses a series of different program
Intermediate Representations (IRs)

e Different IRs are suitable for

Machine Code different program manipulations

¢ (analysis, optimization, code generation)

Compiler Major Phases

Source Code
(concrete syntax)

‘if (x|=|=[oD)| |xI=x[H1|;

Lexical Analysis
AR

Token Stream E@H

Syntax Analysis
(R (Parsing)
Abstract Syntex Tree == S o
(AST) ® © ® @
® @ Semantic Analysis
(Name Analysis,
Type Analysis, ...)

Attributed AST

Code Generation

Machine Code

Main Project

e Implement a complete compiler for a small object-oriented language

Main Project

e Implement a complete compiler for a small object-oriented language

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

e 60% of your final grade is your compiler project

Interpreters vs. Compilers

Interpreter
Reads a source program and produces the results of executing that program

Compiler
Translates a program from high-level source program to low-level target program

language 1 (source) source program

language 2 (target) results, behavior

Interpreter appears to execute a source program as if it were machine language

Interpreters vs. Compilers

Difficulty

e Usually it is easier to build an interpreter than a compiler

Errors
e Interpreter executes source program from first line,
stops execution only when it encounters an error

e Compiler does not translate source program with error

Optimization
e Compiler preprocesses and analyzes source program
e Optimizing compiler can generate code that is far faster than
interpretation
e Until 2013 Facebook was translating PHP (interpreted language)
to C++

a=17,
b=2;

X=a-b;
while(x < 10){

Constant Folding

a="7;
b =2;

XxX=7-2;
while(x < 10){

a="71;
b=2;

X=7-2;
while(x < 10){

a="71;
b =2;

X =5;
while(x < 10){

Optimization Example

Constant Propagation

10

Compiler Phases:

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

11

5%: Interpreter for a small language (while language)
Compiler Phases:

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

11

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

11

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

10%: Midterm Exam

11

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

10%: Midterm Exam
20%: Final Exam

11

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:

10%: Lexical Analysis (Scanner)

10%: Syntax Analysis (Parser)

10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation

10%: Optimization

Pair Programming

10%: Midterm Exam
20%: Final Exam

11

Pair Programming

Seven programming assignments (1 interpreter, 6 phases of compiler)
Implementation language: Java
e Possibility of using another language like C++ if you are more

productive with it
Groups of 2 students
e Same group for entire class

e Same grade for members of group (typically)
e Form groups by the end of this week, email me your group members

Contact me if you are having trouble finding a group
e Workload depends on planning well with your group-mate:

Start early!

12

Challenges

e Is it hard to implement a compiler?

va quora.com,

Quora Search for questions, people, and topics

Compilers Programming Languages ~ Computer Programming

Why are compilers so hard to write?

13

Challenges

e Is it hard to implement a compiler?

va quora.com,

Quora Search for questions, people, and topics

Compilers Programming Languages ~ Computer Programming

Why are compilers so hard to write?

e No. Implementing a correct and efficient compiler is tough

13

Compiler Bugs

M Visual Studio Home Dashboard Directory Help
VISUAL STUDIO AND .NET FRAMEWORK HOME

Feedback Surveys

Visual C++ compiler bug with optimizations enabled; loop condition incorrectly
optimized away - by wibw

14

Compiler Bugs

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ixyang, chenyang, eeide, regehr }@cs.utah.edu [PLDI'II]

“Every compiler we tested was found to crash and also to silently
generate wrong code when presented with valid input.”

15

Verified Compilers

Automatically Proving the Correctness of
Compiler Optimizations

Sorin Lerner Todd Millstein Craig Chambers
Department of Computer Science and Engineering
University of Washington

{lerns todd,chambers;@cs.washington.edu [PLDI'03]

Formal Certification of a Compiler Back-end
or: Programming a Compiler with a Proof Assistant
Xavier Leroy

INRIA Rocquencourt

Xavier.Leroy@inria.fr [POPLVO6]

e Several interesting results on correct compilers

e (see proceedings of PLDI and POPL conferences)

16

Course Staff

e Instructor: Hossein Hojjat (https://www.cs.rit.edu/~hh/)

- University of Tehran
(Bs. Software Engineering 2001 - 2005)
- University of Tehran & TU Eindhoven
(Msc. Software Engineering 2005 - 2007)
- EPFL Lausanne, Switzerland
(PhD Computer Science 2008 - 2013)
- Cornell University
(Postdoctoral Researcher 2014 - 2016)
e Email: hhQcs.rit.edu
e Office: GOL(70)-3545
e Class Hours: MWF 9:05 AM - 10:00 AM
o Office Hours: Tu 1lam - 12am, Th 1lam - 12am
- Send email for alternative time
e Webpage:
- https://mycourses.rit.edu/

- https://cs.rit.edu/~hh/teaching/ccl18/
17

https://www.cs.rit.edu/~hh/
https://mycourses.rit.edu/
https://cs.rit.edu/~hh/teaching/cc18/

Icebreaker

Tell us about your background,
and why do you need to learn about compilers,
and what aspects of a compiler is more interesting to you!

18

co
implementation
in Java

e “Modern Compiler Implementation in Java (2nd Edition)"
(a.k.a. Tiger Book)

e Andrew Appel, Jens Palsberg

e “Compilers: Principles, Techniques, and Tools (2nd Edition) "
(a-k.a. Dragon Book)

e Alfred Aho, Monica Lam, Ravi Sethi, Jeffrey Ullman

19

Academic Integrity

e Read the academic integrity policy of RIT and the department

https://www.cs.rit.edu/SemesterConversion/common.html

e You are allowed to discuss with other groups,
however code sharing is strictly forbidden

e If you aren't sure what is allowed and what isn’t, please ask

PIRACY. YOU wouLON'T YOU wouLoN'T

[1'S A CRIME. STEAL A MOVIE STEAL A coupiLen!

20

https://www.cs.rit.edu/SemesterConversion/common.html

Feedback

Do not hesitate to give constructive feedback at anytime

Whatever you feel to make this course better

Come to office hours, drop me an email if you miss office hour

Speak up openly, just like when you comment in reddit!

22SAS QMS CS '18 - Samurai Jack!! 1 point 1 month ago

I am taking compilers under him next semester. I just hope he is not an awful teacher.
permalink embed parent
ya CS MS/BS 2018 1 point 1 month ago

I pushed off CC to the next spring after this one in hopes of getting Fluet... I might drop you a line to see how
Hojjat was though sometime next semester

permalink embed parent

21

reddit

