
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 05, King’s College London – p. 1/46

Parser
lexer parser code gen

CFL 05, King’s College London – p. 2/46

Parser
lexer parser code gen

CFL 05, King’s College London – p. 2/46

parser input: a sequence of tokens
key(read) lpar id(n) rpar semi

parser output: an abstract syntax tree

read

lpar n rpar

What Parsing is Not

Usually parsing does not check semantic
correctness, e.g.
whether a function is not used before it is defined
whether a function has the correct number of
arguments or are of correct type
whether a variable can be declared twice in a scope

CFL 05, King’s College London – p. 3/46

Regular Languages
While regular expressions are very useful for lexing,
there is no regular expression that can recognise the
language anbn.

(((()()))()) vs. (((()()))()))

So we cannot find out with regular expressions whether
parentheses are matched or unmatched. Also regular
expressions are not recursive, e.g. (1+ 2) + 3.

CFL 05, King’s College London – p. 4/46

Hierarchy of Languages

all languages

decidable languages

context sensitive languages

context-free languages
regular languages

CFL 05, King’s College London – p. 5/46

Time flies like an arrow.
Fruit flies like bananas.

CFL 05, King’s College London – p. 6/46

CFGs
A context-free grammar G consists of
a finite set of nonterminal symbols (e.g. A upper
case)
a finite set terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A ::= rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence ϵ.

We also allow rules
A ::= rhs1|rhs2| . . .

CFL 05, King’s College London – p. 7/46

CFGs
A context-free grammar G consists of
a finite set of nonterminal symbols (e.g. A upper
case)
a finite set terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A ::= rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence ϵ.

We also allow rules
A ::= rhs1|rhs2| . . .

CFL 05, King’s College London – p. 7/46

Palindromes
A grammar for palindromes over the
alphabet {a, b}:

S ::= a · S · a
S ::= b · S · b
S ::= a

S ::= b

S ::= ϵ

CFL 05, King’s College London – p. 8/46

Palindromes
A grammar for palindromes over the
alphabet {a, b}:

S ::= a · S · a | b · S · b | a | b | ϵ

CFL 05, King’s College London – p. 8/46

Arithmetic Expressions

E ::= 0 | 1 | 2 | ... | 9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

1 + 2 * 3 + 4

CFL 05, King’s College London – p. 9/46

Arithmetic Expressions

E ::= 0 | 1 | 2 | ... | 9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

1 + 2 * 3 + 4

CFL 05, King’s College London – p. 9/46

ACFGDerivation
1 Begin with a string containing only the start symbol,

say S

2 Replace any nonterminal X in the string by the
right-hand side of some production X ::= rhs

3 Repeat 2 until there are no nonterminals left

S → . . . → . . . → . . . → . . .

CFL 05, King’s College London – p. 10/46

Example Derivation

S ::= ϵ | a · S · a | b · S · b

S → aSa
→ abSba
→ abaSaba
→ abaaba

CFL 05, King’s College London – p. 11/46

Example Derivation

E ::= 0 | 1 | 2 | ... | 9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

E→ E ∗ E
→ E+ E ∗ E
→ E+ E ∗ E+ E
→+ 1+ 2 ∗ 3+ 4

E→ E+ E
→ E+ E+ E
→ E+ E ∗ E+ E
→+ 1+ 2 ∗ 3+ 4

CFL 05, King’s College London – p. 12/46

Example Derivation

E ::= 0 | 1 | 2 | ... | 9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

E→ E ∗ E
→ E+ E ∗ E
→ E+ E ∗ E+ E
→+ 1+ 2 ∗ 3+ 4

E→ E+ E
→ E+ E+ E
→ E+ E ∗ E+ E
→+ 1+ 2 ∗ 3+ 4

CFL 05, King’s College London – p. 12/46

Language of a CFG
Let G be a context-free grammar with start symbol S.
Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T∧ S →∗ c1 . . . cn}

Terminals, because there are no rules for replacing
them.
Once generated, terminals are “permanent”.
Terminals ought to be tokens of the language
(but can also be strings).

CFL 05, King’s College London – p. 13/46

Language of a CFG
Let G be a context-free grammar with start symbol S.
Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T∧ S →∗ c1 . . . cn}

Terminals, because there are no rules for replacing
them.
Once generated, terminals are “permanent”.
Terminals ought to be tokens of the language
(but can also be strings).

CFL 05, King’s College London – p. 13/46

Parse Trees
E ::= T | T ·+ · E | T · − · E
T ::= F | F · ∗ · T
F ::= 0...9 | (·E·)

CFL 05, King’s College London – p. 14/46

E

T

F

1

+ E

T

F

2

* T

F

3

+ E

T

F

4

1 + 2 * 3 + 4

Arithmetic Expressions

E ::= 0..9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

A CFG is left-recursive if it has a nonterminal E such
that E →+ E · . . .

CFL 05, King’s College London – p. 15/46

Arithmetic Expressions

E ::= 0..9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

A CFG is left-recursive if it has a nonterminal E such
that E →+ E · . . .

CFL 05, King’s College London – p. 15/46

Ambiguous Grammars
A grammar is ambiguous if there is a string that has
at least two different parse trees.

E ::= 0...9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

1 + 2 * 3 + 4
CFL 05, King’s College London – p. 16/46

‘Dangling’ Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| …

if a then if x then y else c

CFL 05, King’s College London – p. 17/46

CYKAlgorithm

Suppose the grammar:

S ::= N · P
P ::= V · N
N ::= N · N
N ::= students | Jeff | geometry | trains
V ::= trains

Jeff trains geometry students

CFL 05, King’s College London – p. 18/46

CYKAlgorithm

Jeff
trains

geometry

students

N N,V N N

1

2

3

4

CFL 05, King’s College London – p. 19/46

S ::= N · P
P ::= V · N
N ::= N · N
N ::= students | Jeff

| geometry | trains
V ::= trains

Chomsky Normal Form
A grammar for palindromes over the
alphabet {a, b}:

S ::= a · S · a | b · S · b | a · a | b · b | a | b

CFL 05, King’s College London – p. 20/46

CYKAlgorithm

fastest possible algorithm for recognition problem
runtime is O(n3)

grammars need to be transformed into CNF

CFL 05, King’s College London – p. 21/46

Context Sensitive Grammars
It is much harder to find out whether a string is
parsed by a context sensitive grammar:

S ::= bSAA | ϵ

A ::= a

bA ::= Ab

S → . . . →? ababaa

Time flies like an arrow;
fruit flies like bananas.

CFL 05, King’s College London – p. 22/46

Context Sensitive Grammars
It is much harder to find out whether a string is
parsed by a context sensitive grammar:

S ::= bSAA | ϵ

A ::= a

bA ::= Ab

S → . . . →? ababaa

Time flies like an arrow;
fruit flies like bananas.

CFL 05, King’s College London – p. 22/46

Context Sensitive Grammars
It is much harder to find out whether a string is
parsed by a context sensitive grammar:

S ::= bSAA | ϵ

A ::= a

bA ::= Ab

S → . . . →? ababaa

Time flies like an arrow;
fruit flies like bananas.

CFL 05, King’s College London – p. 22/46

Parser Combinators
One of the simplest ways to implement a parser, see
https://vimeo.com/142341803

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

atomic parsers
sequencing
alternative
semantic action

CFL 05, King’s College London – p. 23/46

https://vimeo.com/142341803

Atomic parsers, for example, number tokens

Num(123) :: rest ⇒ {(Num(123), rest)}

you consume one or more token from the
input (stream)
also works for characters and strings

CFL 05, King’s College London – p. 24/46

Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

CFL 05, King’s College London – p. 25/46

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed part
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

CFL 05, King’s College London – p. 26/46

Function parser (code p ⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)

CFL 05, King’s College London – p. 27/46

Function parser (code p ⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)

CFL 05, King’s College London – p. 27/46

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 05, King’s College London – p. 28/46

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 05, King’s College London – p. 28/46

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 05, King’s College London – p. 28/46

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S

Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S

CFL 05, King’s College London – p. 29/46

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S
Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T

Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S

CFL 05, King’s College London – p. 29/46

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S
Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S
CFL 05, King’s College London – p. 29/46

Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)

CFL 05, King’s College London – p. 30/46

Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)

CFL 05, King’s College London – p. 30/46

Scannerless Parsers

input: string
output: set of (output_type, string)

but using lexers is better because whitespaces or
comments can be filtered out; then input is a
sequence of tokens

CFL 05, King’s College London – p. 31/46

Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)

CFL 05, King’s College London – p. 32/46

Abstract Parser Class

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I) : Set[T] =
for ((head, tail) <‐ parse(ts);

if (tail.isEmpty)) yield head
}

CFL 05, King’s College London – p. 33/46

class AltParser[I, T](p: => Parser[I, T],
q: => Parser[I, T])

extends Parser[I, T] {
def parse(sb: I) = p.parse(sb) ++ q.parse(sb)

}

class SeqParser[I, T, S](p: => Parser[I, T],
q: => Parser[I, S])

extends Parser[I, (T, S)] {
def parse(sb: I) =

for ((head1, tail1) <‐ p.parse(sb);
(head2, tail2) <‐ q.parse(tail1))

yield ((head1, head2), tail2)
}

class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
extends Parser[I, S] {

def parse(sb: I) =
for ((head, tail) <‐ p.parse(sb))

yield (f(head), tail)
} CFL 05, King’s College London – p. 34/46

TwoGrammars
Which languages are recognised by the following
two grammars?

S → 1 · S · S
| ϵ

U → 1 · U
| ϵ

CFL 05, King’s College London – p. 35/46

Ambiguous Grammars

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

1s

tim
e
in

se
cs

unambiguous

CFL 05, King’s College London – p. 36/46

Ambiguous Grammars

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

1s

tim
e
in

se
cs

unambiguous
ambiguous

CFL 05, King’s College London – p. 36/46

While-Language
Stmt ::= skip

| Id := AExp

| if BExp then Block else Block

| while BExp do Block

Stmts ::= Stmt ; Stmts

| Stmt

Block ::= { Stmts }

| Stmt

AExp ::= …

BExp ::= …
CFL 05, King’s College London – p. 37/46

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

CFL 05, King’s College London – p. 38/46

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y
eval(stmt, env)

CFL 05, King’s College London – p. 38/46

Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)

CFL 05, King’s College London – p. 39/46

Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }

CFL 05, King’s College London – p. 40/46

Test Program

??

CFL 05, King’s College London – p. 41/46

Interpreted Code

200 400 600 800 1,000 1,200 1,400

100

200

300

n

se
cs

CFL 05, King’s College London – p. 42/46

Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler
many languages take advantage of JVM’s
infrastructure (JRE)
is garbage collected⇒ no buffer overflows
some languages compile to the JVM: Scala,
Clojure…

CFL 05, King’s College London – p. 43/46

For CW2, please include ’\’ as a symbol in
strings, because the collatz program contains

write "\n";

CFL 05, King’s College London – p. 44/46

val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
how are the first rectification functions f1s and
f2s made? could you maybe show an example?

CFL 05, King’s College London – p. 45/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

CFL 05, King’s College London – p. 46/46

