Homework 5

1. Consider the basic regular expressions

$$r ::= \varnothing \mid \epsilon \mid c \mid r_1 + r_2 \mid r_1 \cdot r_2 \mid r^*$$

and suppose you want to show a property P(r) for all regular expressions r by structural induction. Write down which cases do you need to analyse. State clearly the induction hypotheses if applicable in a case.

2. Define a regular expression, written *ALL*, that can match every string. This definition should be in terms of the following extended regular expressions:

$$r ::= \varnothing \mid \epsilon \mid c \mid r_1 + r_2 \mid r_1 \cdot r_2 \mid r^* \mid \sim r$$

3. Assume the delimiters for comments are /* and */. Give a regular expression that can recognise comments of the form

where the three dots stand for arbitrary characters, but not comment delimiters.

4. Define the following regular expressions

r^+	(one or more matches)
$r^{?}$	(zero or one match)
$r^{\{n\}}$	(exactly <i>n</i> matches)
$r^{\{m,n\}}$	(at least m and maximal n matches, with the
	assumption $m \leq n$)

in terms of the usual basic regular expressions

 $r ::= \varnothing \mid \epsilon \mid c \mid r_1 + r_2 \mid r_1 \cdot r_2 \mid r^*$

5. Give the regular expressions for lexing a language consisting of identifiers, left-parenthesis (, right-parenthesis), numbers that can be either positive or negative, and the operations +, – and *.

Decide whether the following strings can be lexed in this language?

- (a) "(a3+3)*b"
- (b) ")()++-33"
- (c) "(b42/3)*3"

In case they can, give the corresponding token sequences. (Hint: Observe the maximal munch rule and the priorities of your regular expressions that make the process of lexing unambiguous.)

6. (Optional) Recall the definitions for *Der* and *der* from the lectures. Prove by induction on *r* the property that

$$L(der c r) = Der c (L(r))$$

holds.