
Handout 6
While regular expressions are very useful for lexing and for recognising many
patterns (like email addresses), they have their limitations. For example there
is no regular expression that can recognise the language anbn. Another example
is the language of well-parenthesised expressions. In languages like Lisp, which
use parentheses rather extensively, it might be of interest whether the following
two expressions are well-parenthesised (the left one is, the right one is not):

(((()()))()) (((()()))()))

In order to solve such recognition problems, we need more powerful tech-
niques than regular expressions. We will in particular look at context-free lan-
guages. They include the regular languages as the picture below shows:

...

all languages

.

.
decidable languages

.

.context sensitive languages

.

.
context-free languages

.

.

regular languages

Context-free languages play an important role in ‘day-to-day’ text processing
and in programming languages. Context-free languages are usually specified by
grammars. For example a grammar for well-parenthesised expressions is

P → (·P ·) · P | ϵ

In general grammars consist of finitely many rules built up from terminal sym-
bols (usually lower-case letters) and non-terminal symbols (upper-case letters).
Rules have the shape

NT → rhs

where on the left-hand side is a single non-terminal and on the right a string
consisting of both terminals and non-terminals including the ϵ-symbol for indi-
cating the empty string. We use the convention to separate components on the
right hand-side by using the · symbol, as in the grammar for well-parenthesised
expressions. We also use the convention to use | as a shorthand notation for
several rules. For example

NT → rhs1 | rhs2

means that the non-terminal NT can be replaced by either rhs1 or rhs2. If
there are more than one non-terminal on the left-hand side of the rules, then
we need to indicate what is the starting symbol of the grammar. For example
the grammar for arithmetic expressions can be given as follows

1

E → N
E → E ·+ · E
E → E · − · E
E → E · ∗ · E
E → (·E·)
N → ϵ | 0 ·N | 1 ·N | . . . | 9 ·N

where E is the starting symbol. A derivation for a grammar starts with the
staring symbol of the grammar and in each step replaces one non-terminal by a
right-hand side of a rule.

2

