
Handout 6 (Parser Combinators)
This handout explains how parser combinatorswork and how they can be imple-
mented in Scala. Their most distinguishing feature is that they are very easy to
implement (admiĴedly it is only easy in a functional programming language).
Another good point of parser combinators is that they can deal with any kind of
input as long as this input is of “sequence-kind”, for example a string or a list of
tokens. The only two properties of the inputwe need is to be able to test when it
is empty and “sequentially” take it apart. Strings and lists fit this bill. However,
parser combinators also have their drawbacks. For example they require that
the grammar to be parsed is not left-recursive and they are efficient only when
the grammar is unambiguous. It is the responsibility of the grammar designer
to ensure these two properties.

The general idea behind parser combinators is to transform the input into
sets of pairs, like so

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

Given the extended effort we have spent in order to implement a lexer in order
to generate list of tokens, it might be surprising that in what follows we shall
often use strings as input. This is for making the explanation more lucid. It
does not make our previous work on lexers obsolete (remember they transform
a string into a list of tokens). Lexerswill still be needed for building a somewhat
realistic compiler.

But as said, parser combinators are relatively agnostic about what kind of
input they process. In my Scala code I use the following polymorphic types for
parser combinators:

input: I output: T

That is they take as input something of type I and return a set of pairs of type
Set[(T, I)]. Since the input needs to be of “sequence-kind”, I actually have to
often write I <% Seq[_] for the input type. This ensures the input is a subtype
of Scala sequences. The first component of the generated pairs corresponds to
what the parser combinator was able to process from the input and the second
is the unprocessed part of the input (therefore the type of this unprocessed part
is the same as the input). As we shall see shortly, a parser combinator might
return more than one such pair; the idea is that there are potentially several
ways of how to parse the input. As a concrete example, consider the string

i f f o o t e s t b a r

Wemight have a parser combinator which tries to interpret this string as a key-
word (if) or as an identifier (iffoo). Then the output will be the set{(

i f , f o o t e s t b a r
)

,
(
i f f o o , t e s t b a r

)}
1

where the first pair means the parser could recognise if from the input and
leaves the rest as ‘unprocessed’ as the second component of the pair; in the
other case it could recognise iffoo and leaves testbar as unprocessed. If the
parser cannot recognise anything from the input at all, then parser combinators
just return the empty set {}. This will indicate something “went wrong”…or
more precisely, nothing could be parsed.

Also important to note is that the type T for the processed part is different
from the input type. In the example above is just happens to be the same. The
reason for the difference is that in general we are interested in transforming our
input into something “different”…for example into a tree; or if we implement
the grammar for arithmetic expressions, we might be interested in the actual
integer number the arithmetic expression, say 1 + 2 * 3, stands for. In this
way we can use parser combinators to implement relatively easily a calculator,
for instance.

The main idea of parser combinators is that we can easily build parser com-
binators out of smaller components following very closely the structure of a
grammar. In order to implement this in an object-oriented programming lan-
guage, like Scala, we need to specify an abstract class for parser combinators.
This abstract class states that the function parse takes an argument of type I
and returns a set of type Set[(T, I)].

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I): Set[T] =
for ((head, tail) <- parse(ts); if (tail.isEmpty))

yield head
}

It is the obligation in each instance (parser combinator) to supply an imple-
mentation for parse. From this function we can then “centrally” derive the
function parse_all, which just filters out all pairs whose second component is
not empty (that is has still some unprocessed part). The reason is that at the
end of the parsing we are only interested in the results where all the input has
been consumed and no unprocessed part is left over.

One of the simplest parser combinators recognises just a single character,
say c, from the beginning of strings. Its behaviour can be described as follows:

• If the head of the input string starts with a c, then return the set

{(c, tail of s)}

where tail of s is the unprocessed part of the input string.

• Otherwise return the empty set {}.

2

The input type of this simple parser combinator for characters is String and
the output type is Char. This means parse returns Set[(Char, String)]. The
code in Scala is as follows:

case class CharParser(c: Char) extends Parser[String, Char] {
def parse(in: String) =

if (in.head == c) Set((c, in.tail)) else Set()
}

You can see the parse tests whether the first character of the input string in
is equal to c. If yes, then it splits the string into the recognised part c and the
unprocessed part in.tail. In case in does not start with c then the parser
returns the empty set (in Scala Set()). Since this parser recognises characters
and just returns characters as the processed part, the output type of the parser
is Char.

If we want to parse a list of tokens and interested in recognising a number
token, we could write something like this

case object NumParser extends Parser[List[Token], Int] {
def parse(ts: List[Token]) = ts match {

case Num_token(s)::ts => Set((s.toInt, ts))
case _ => Set ()

}
}

In this parser the input is of type List[Token]. The function parse looks at the
input ts and checks whether the first token is a Num_token. Let us assume our
lexer generated these tokens for numbers. But this parser does not just return
this token (and the rest of the list), like the CharParser above, rather extracts
the string s from the token and converts it into an integer. The hope is that the
lexer did its work well and this conversion always succeeds. The consequence
of this is that the output type for this parser is Int, not Token. Such a conversion
would be needed if we want to implement a simple calculator program.

These simple parsers that just look at the input and do a simple transforma-
tion are often called atomic parser combinators. More interesting are the parser
combinators that build larger parsers out of smaller component parsers. There
are three such parser combinators that can be implemented generically. The
alternative parser combinator is as follows: given two parsers, say, p and q, we
apply both parsers to the input (remember parsers are functions) and combine
the output (remember they are sets of pairs):

p(input) ∪ q(input)

In Scala we can implement alternative parser combinator as follows

3

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(in: I) = p.parse(in) ++ q.parse(in)
}

The types of this parser combinator are again generic (we have I for the input
type, and T for the output type). The alternative parser builds a new parser
out of two existing parsers p and q given as arguments. Both parsers need to
be able to process input of type I and return in parse the same output type
Set[(T, I)].1 The alternative parser should run the input with the first parser
p (producing a set of pairs) and then run the same input with q (producing
another set of pairs). The result should be then just the union of both sets,
which is the operation ++ in Scala.

The alternative parser combinator allows us to construct a parser that parses
either a character a or b using the CharParser shown above. For this we can
write

new AltParser(CharParser('a'), CharParser('b'))

Later on we will use Scala mechanism for introducing some more readable
shorthand notation for this, like "a" || "b". Let us look in detail at what this
parser combinator produces with some sample strings

input strings output

a c d e →
{
(a , c d e)

}
b c d e →

{
(b , c d e)

}
c c d e → {}

We receive in the first two cases a successful output (that is a non-empty set).
In each case, either a or b is in the processed part, and cde in the unprocessed
part. Clearly this parser cannot parse anything with ccde, therefore the empty
set is returned.

A bit more interesting is the sequence parser combinator. Given two parsers,
say again, p and q, we want to apply first the input to p producing a set of
pairs; then apply q to all the unparsed parts in the pairs; and then combine the
results. Mathematically we would write something like this for the expected
set of pairs:

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

1There is an interesting detail of Scala, namely the => in front of the types of p and q. They will
prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.

4

Notice that the p wil first be run on the input, producing pairs of the form
(output1, u1) where the u1 stands for the unprocessed, or left-over, parts. We
want that q runs on all these unprocessed parts u1. This again will produce
some processed part , p and q, we apply both parsers to the input (remember
parsers are functions) and combine the output (remember they are sets of pairs)

p(input) ∪ q(input)

In Scala we would implement alternative parser combinator as follows

class AltParser[I, T]
(p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {

def parse(in: I) = p.parse(in) ++ q.parse(in)
}

The types of this parser combinator are again generic (we just have I for the
input type, and T for the output type). The alternative parser builds a new
parser out of two existing parsers p and q. Both need to be able to process
input of type I and return the same output type Set[(T, I)].2 Therefore the
output type of this parser is T. The alternative parser should run the input with
the first parser p (producing a set of pairs) and then run the same input with
q (producing another set of pairs). The result should be then just the union of
both sets, which is the operation ++ in Scala.

The alternative parser combinator already allows us to construct a parser
that parses either a character a or b, as

new AltParser(CharParser('a'), CharParser('b'))

Later on we will use again Scala mechanism for introducing some more read-
able shorthand notation for this, like "a" || "b". Let us look in detail at what
this parser combinator produces with some sample strings

input strings output

a c d e →
{
(a , c d e)

}
b c d e →

{
(b , c d e)

}
c c d e → {}

We receive in the first two cases a successful output (that is a non-empty set).
In each case, either a or b is in the processed part, and cde in the unprocessed
part. Clearly this parser cannot parse anything in the string ccde, therefore the
empty set.

2There is an interesting detail of Scala, namely the => in front of the types of p and q. They will
prevent the evaluation of the arguments before they are used. This is often called lazy evaluation of
the arguments. We will explain this later.

5

A bit more interesting is the sequence parser combinator. Given two parsers,
say again, p and q, we want to apply first the input to p producing a set of pairs;
then apply q to all the unparsed parts in the pairs; and then combine the results
like

{((output1, output2), u2) | (output1, u1) ∈ p(input) ∧
(output2, u2) ∈ q(u1)}

Notice that the p will first be run on the input, producing pairs of the form
output1 and unprocessed part u1. This unprocessed part is fed into the second
parser q. The overall result of the sequence parser combinator is pairs of the
form ((output1, output2), u2). This means the unprocessed part of both parsers
is the unprocessed part the second parser q produces leaves as left-over. The
processed parts of both parsers is a pair consisting of the outputs of p and q,
namely (output1, output2). This behaviour can be implemented in Scala as fol-
lows:

class SeqParser[I, T, S]
(p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {

def parse(in: I) =
for ((output1, u1) <- p.parse(in);

(output2, u2) <- q.parse(u1))
yield ((output1, output2), u2)

}

This parser takes again as arguments two parsers, p and q. It implements parse
as follows: let first run the parser p on the input producing a set of pairs (output1,
u1). The u1 stands for the unprocessed parts left over by p. Let then q run on
these unprocessed parts producing again a set of pairs. The output of the se-
quence parser combinator is then a set containing pairs where the first compo-
nents are again pairs, namely what the first parser could parse together with
what the second parser could parse; the second component is the unprocessed
part left over after running the second parser q. Therefore the input type of the
sequence parser combinator is as usual I, but the output type is

Set[((T, S), I)]

If any of the runs of p and q fail, that is produce the empty set, then parse will
also produce the empty set. Notice that we have now two output types for the
sequence parser combinator, because in general p and qmight produce different
things (for example first we recognise a number and then a string correspond-
ing to an operator).

With the shorthand notationwe shall introduce later for the sequence parser
combinator, we can write for example "a" ~ "b", which is the parser combi-
nator that first recognises the character a from a string and then b. Let us look
again at three examples of how this parser combinator processes some strings:

6

input strings output

a b c d e →
{
((a , b), c d e)

}
b a c d e → {}
c c c d e → {}

In the first line we have a successful parse, because the string starts with ab,
which is the prefix we are looking for. But since the parsing combinator is con-
structed as sequence of the two simple (atomic) parsers for a and b, the result
is a nested pair of the form ((a, b), cde). It is not a simple pair (ab, cde)
as one might erroneously expect. The parser returns the empty set in the other
examples, because they do not fit with what the parser is supposed to parse.

A slightly more complicated parser is ("a" || "b") ~ "c" which parses
as first character either an a or b, followed by a c. This parser produces the
following outputs.

input strings output

a c d e →
{
((a , c), d e)

}
b c d e →

{
((b , c), d e)

}
a b d e → {}

Now consider the parser ("a" ~ "b") ~ "c"which parses a, b, c in sequence.
This parser produces the following outputs.

input strings output

a b c d e →
{
(((a , b), c), d e)

}
a b d e → {}
b c d e → {}

The second and third example fail, because something is “missing” in the se-
quence we are looking for. Also notice how the results nest with sequences: the
parsed part is a nested pair of the form ((a, b), c). Twomore examples: first
consider the parser ("a" ~ "a") ~ "a" and the input aaaa:

input string output

a a a a →
{
(((a , a), a), a)

}
Notice how again the results nest deeper and deeper as pairs (the last a is in the
unprocessed part). To consume everything of this string we can use the parser
(("a" ~ "a") ~ "a") ~ "a". Then the output is as follows:

input string output

a a a a →
{
((((a , a), a), a), "")

}
This is an instance where the parser consumed completely the input, meaning
the unprocessed part is just the empty string. So if we called parse_all, instead
of parse, we would get back the result

7

{
(((a , a), a), a)

}
where the unprocessed (empty) parts have been stripped away from the pairs;
everythingwhere the second partwas not empty has been thrown away aswell,
because they represent ultimately-unsuccessful-parses.

Note carefully that constructing a parser such "a" || ("a" ~ "b")will re-
sult in a typing error. The intention is that we want to parse an a, or an a fol-
lowed by a b. However, the first parser has as output type a single character
(recall the type of CharParser), but the second parser produces a pair of char-
acters as output. The alternative parser is required to have both component
parsers to have the same type—we need to be able to build the union of two
sets, which means in Scala they need to be of the same type. We will see later
how we can build this parser without the typing error.

The next parser combinator, called semantic action, does not actually com-
bine smaller parsers, but applies a function to the result of a parser. It is imple-
mented in Scala as follows

class FunParser[I, T, S]
(p: => Parser[I, T],
f: T => S) extends Parser[I, S] {

def parse(in: I) =
for ((head, tail) <- p.parse(in)) yield (f(head), tail)

}

This parser combinator takes a parser pwith output type T as one argument as
well as a function f with type T => S. The parser p produces sets of type (T,
I). The semantic action combinastor then applies the function f to all the parser
outputs. Since this function is of type T => S, we obtain a parser with output
type S. Again Scala lets us introduce some shorthand notation for this parser
combinator. Therefore we will write p ==> f for it.

What are semantic actions good for? Well, they allow is to transform the
parsed input into a datastructure we can use for further processing. A simple
example would be to transform parsed characters into ASCII numbers. Sup-
pose we define a function f (from characters to ints) and use a CharParser for
the character c.

val f = (c: Char) => c.toInt
val c = new CharParser('c')

Then we can run the following parsers on the input cbd:

c.parse("cbd")
(c ==> f).parse("cbd")

8

The first line we obtain the result Set(('c', "bd")), whereas the second pro-
duces Set((99, "bd"))—the character has been transformed into an ASCII
number.

A slightly less contrived example is about parsing numbers (recall NumParser
above). However, we want to do this here for strings. For this assume we have
the following RegexParser.

import scala.util.matching.Regex

case class RegexParser(reg: Regex) extends Parser[String, String] {
def parse(in: String) = reg.findPrefixMatchOf(in) match {

case None => Set()
case Some(m) => Set((m.matched, m.after.toString))

}
}

This parser takes a regex as argument and splits up a string into a prefix and the
rest according to this regex (reg.findPrefixMatchOf generates amatch—in the
successful case—and the corresponding strings can be extracted with matched
and after). We can now define a NumParser for strings as follows:

val NumParser = RegexParser("[0-9]+".r)

This parser will recognise a number at the beginning of a string, for example

NumParser.parse("123abc")

produces Set((123,abc)). The problem is that 123 is still a string. We need to
convert it into the corresponding Int. We can do this as follows

(NumParser ==> (s => s.toInt)).parse("123abc")

The semantic action in form of a function converts a string into an Int. Let
us come back to semantic actions when we are going to implement a simple
calculator.

Shorthand notation for parser combinators

Before we proceed, let us just explain the shorthand notation for parser combi-
nators. Like for regular expressions, the shorthand notation will make our life
much easier when writing actual parsers.

9

How to build parsers using parser combinators?

The beauty of parser combinators is the ease with which they can be imple-
mented and how easy it is to translate context-free grammars into code (though
the grammars need to be non-left-recursive). To demonstrate this recall our
context-free grammar for palindromes:

P ::= a · P · a | b · P · b | a | b | ϵ

Given the parser combinators for alternatives and sequeneces, this grammar
should be straightforward to implement. The first idea would be

lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") | ("b" ~ Pal ~ "b") | "a" | "b" | "")

Unfortunately, this does not work as it produces a typing error. The reason
is that the parsers "a", "b" and "" all produce strings and therefore can be
put into an alternative ...| "a" | "b" | "". But both "a" ~ Pal ~ "a" and
"b" ~ Pal ~ "b" produce pairs of the form (((_, _), _), _)—that is how the se-
quence parser combinator nests results when ~ is used between two compo-
nents. The solution is to use a semantic action that “flaĴens” these pairs and
appends the corresponding strings, like

lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") ==> { case ((x, y), z) => x + y + z } |
("b" ~ Pal ~ "b") ==> { case ((x, y), z) => x + y + z } |
"a" | "b" | "")

Implementing an Interpreter

10

