
Proof

Recall the definitions for regular expressions and the language associated with
a regular expression:

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2
| r∗

L(∅)
def
= ∅

L(ϵ)
def
= {""}

L(c)
def
= {"c"}

L(r1 · r2)
def
= L(r1)@L(r2)

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r∗)
def
=

∪
n≥0 L(r)

n

We also defined the notion of a derivative of a regular expression (the derivative
with respect to a character):

der c (∅)
def
= ∅

der c (ϵ)
def
= ∅

der c (d)
def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

With our definition of regular expressions comes an induction principle. Given
a property P over regular expressions. We can establish that ∀r. P (r) holds,
provided we can show the following:

1. P (∅), P (ϵ) and P (c) all hold,

2. P (r1 + r2) holds under the induction hypotheses that P (r1) and P (r2)
hold,

3. P (r1 ·r2) holds under the induction hypotheses that P (r1) and P (r2) hold,
and

4. P (r∗) holds under the induction hypothesis that P (r) holds.

Let us try out an induction proof. Recall the definition

Der cA
def
= {s | c ::s ∈ A}

whereby A is a set of strings. We like to prove

P (r)
def
= L(der c r) = Der c (L(r))

by induction over the regular expression r.
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Proof
According to 1. above we need to prove P (∅), P (ϵ) and P (d). Lets do this in
turn.

• First Case: P (∅) is L(der c∅) = Der c (L(∅)) (a). We have der c∅ = ∅
and L(∅) = ∅. We also have Der c∅ = ∅. Hence we have ∅ = ∅ in (a).

• Second Case: P (ϵ) is L(der c ϵ) = Der c (L(ϵ)) (b). We have der c ϵ = ∅,
L(∅) = ∅ and L(ϵ) = {""}. We also have Der c {""} = ∅. Hence we
have ∅ = ∅ in (b).

• Third Case: P (d) is L(der c d) = Der c (L(d)) (c). We need to treat the
cases d = c and d ̸= c.

d = c: We have der c c = ϵ and L(ϵ) = {""}. We also have L(c) = {"c"}
and Der c {"c"} = {""}. Hence we have {""} = {""} in (c).

d ̸= c: We have der c d = ∅. We also have Der c {"d"} = ∅. Hence we
have ∅ = ∅ in (c).

These were the easy base cases. Now come the inductive cases.

• Fourth Case: P (r1 + r2) is L(der c (r1 + r2)) = Der c (L(r1 + r2)) (d). This
is what we have to show. We can assume already:

P (r1): L(der c r1) = Der c (L(r1)) (I)
P (r2): L(der c r2) = Der c (L(r2)) (II)

We have that der c (r1+ r2) = (der c r1)+(der c r2) and also L((der c r1)+
(der c r2)) = L(der c r1) ∪ L(der c r2). By (I) and (II) we know that the
left-hand side is Der c (L(r1)) ∪ Der c (L(r2)). You need to ponder a bit,
but you should see that

Der c(A ∪B) = (Der cA) ∪ (Der cB)

holds for every set of strings A and B. That means the right-hand side of
(d) is also Der c (L(r1))∪Der c (L(r2)), because L(r1+r2) = L(r1)∪L(r2).
And we are done with the fourth case.

• Fifth Case: P (r1 · r2) is L(der c (r1 · r2)) = Der c (L(r1 · r2)) (e). We can
assume already:

P (r1): L(der c r1) = Der c (L(r1)) (I)
P (r2): L(der c r2) = Der c (L(r2)) (II)

Let us first consider the case where nullable(r1) holds. Then

der c (r1 · r2) = ((der c r1) · r2) + (der c r2).
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The corresponding language of the right-hand side is

(L(der c r1)@L(r2)) ∪ L(der c r2).

By the induction hypotheses (I) and (II), this is equal to

(Der c (L(r1))@L(r2)) ∪ (Der c (L(r2)). (∗∗)

We also know that L(r1 · r2) = L(r1)@L(r2). We have to know what
Der c (L(r1)@L(r2)) is.

Let us analyse what Der c (A@B) is for arbitrary sets of strings A and B.
If A does not contain the empty string, then every string in A@B is of the
form s1 @ s2 where s1 ∈ A and s2 ∈ B. So if s1 starts with c then we just
have to remove it. Consequently, Der c (A@B) = (Der c (A))@B. This
case does not apply here though, because we already proved that if r1 is
nullable, then L(r1) contains the empty string. In this case, every string
in A@B is either of the form s1 @ s2, with s1 ∈ A and s2 ∈ B, or s3 with
s3 ∈ B. This means Der c (A@B) = ((Der c (A))@B)∪Der cB. But this
proves that (**) is Der c (L(r1)@L(r2)).

Similarly in the case where r1 is not nullable.

• Sixth Case: P (r∗) is L(der c (r∗)) = Der cL(r∗). We can assume already:

P (r): L(der c r) = Der c (L(r)) (I)

We have der c (r∗) = der c r·r∗. Which means L(der c (r∗)) = L(der c r·r∗)
and further L(der c r)@L(r∗). By induction hypothesis (I) we know that
is equal to (Der cL(r))@L(r∗). (*)

Let us now analyse Der cL(r∗), which is equal to Der c ((L(r))∗). Now
(L(r))∗ is defined as

∪
n≥0 L(r). We can write this as L(r)0 ∪

∪
n≥1 L(r), where

we just separated the first union and then let the “big-union” start from 1. Form
this we can already infer

Der c (L(r∗)) = Der c (L(r)0 ∪
∪

n≥1 L(r)) = (Der cL(r)0) ∪Der c (
∪

n≥1 L(r))

The first union “disappears” since Der c (L(r)0) = ∅.
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