Homework 2

- 1. What is the language recognised by the regular expressions $(\emptyset^*)^*$.
- 2. Review the first handout about sets of strings and read the second handout. Assuming the alphabet is the set $\{a, b\}$, decide which of the following equations are true in general for arbitrary languages *A*, *B* and *C*:

$$(A \cup B)@C = ? A@C \cup B@C$$
$$A^* \cup B^* = ? (A \cup B)^*$$
$$A^*@A^* = ? A^*$$
$$(A \cap B)@C = ? (A@C) \cap (B@C)$$

In case an equation is true, give an explanation; otherwise give a counterexample.

- 3. Given the regular expressions $r_1 = \epsilon$ and $r_2 = \emptyset$ and $r_3 = a$. How many strings can the regular expressions r_1^* , r_2^* and r_3^* each match?
- 4. Give regular expressions for (a) decimal numbers and for (b) binary numbers. (Hint: Observe that the empty string is not a number. Also observe that leading 0s are normally not written.)
- 5. Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv a^*$ and $(a \cdot b)^* \cdot a \equiv a \cdot (b \cdot a)^*$.
- 6. Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of *r* is with respect to *a*, *b* and *c*. Is *r* nullable?
- 7. Prove that for all regular expressions *r* we have

nullable(r) if and only if [] $\in L(r)$

Write down clearly in each case what you need to prove and what are the assumptions.

- 8. Define what is mean by the derivative of a regular expressions with respoect to a character. (Hint: The derivative is defined recursively.)
- 9. Assume the set *Der* is defined as

$$Der c A \stackrel{\text{def}}{=} \{s \mid c :: s \in A\}$$

What is the relation between *Der* and the notion of derivative of regular expressions?

- 10. Give a regular expression over the alphabet $\{a, b\}$ recognising all strings that do not contain any substring *bb* and end in *a*.
- 11. Do $(a + b)^* \cdot b^+$ and $(a^* \cdot b^+) + (b^* \cdot b^+)$ define the same language?