
Automata and
Formal Languages (9)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 09, King’s College London, 28. November 2012 – p. 1/18

While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| write Id

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → . . .
BExp → . . .

AFL 09, King’s College London, 28. November 2012 – p. 2/18

Fibonacci Numbers
1 /* Fibonacci Program
2 input: n
3 output: fib_res */
4

5 n := 90;
6 minus1 := 0;
7 minus2 := 1;
8 temp := 0;
9 while n > 0 do {

10 temp := minus2;
11 minus2 := minus1 + minus2;
12 minus1 := temp;
13 n := n - 1
14 };
15 fib_res := minus2;
16 write fib_res

AFL 09, King’s College London, 28. November 2012 – p. 3/18

Interpreter

AFL 09, King’s College London, 28. November 2012 – p. 4/18

Interpreting a List of Tokens

The lexer cannot prevent errors like

 . . .<p></p>

or

 . . .

AFL 09, King’s College London, 28. November 2012 – p. 5/18

Parser Combinators

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

sequencing
alternative
semantic action

AFL 09, King’s College London, 28. November 2012 – p. 6/18

Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

AFL 09, King’s College London, 28. November 2012 – p. 7/18

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:
((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

AFL 09, King’s College London, 28. November 2012 – p. 8/18

Function parser (code p =⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)

AFL 09, King’s College London, 28. November 2012 – p. 9/18

Function parser (code p =⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the
parsed input”)

AFL 09, King’s College London, 28. November 2012 – p. 9/18

Token parser:

if the input is

tok1 :: tok2 :: . . . :: tokn

then return

{(tok1, tok2 :: . . . :: tokn)}
or

{}
if tok1 is not the right token we are looking for

AFL 09, King’s College London, 28. November 2012 – p. 10/18

Number-Token parser:

if the input is

num_tok(42) :: tok2 :: . . . :: tokn

then return

{(42, tok2 :: . . . :: tokn)}
or

{}
if tok1 is not the right token we are looking for

list of tokens⇒ set of (int, list of tokens)

AFL 09, King’s College London, 28. November 2012 – p. 11/18

Number-Token parser:

if the input is

num_tok(42) :: tok2 :: . . . :: tokn

then return

{(42, tok2 :: . . . :: tokn)}
or

{}
if tok1 is not the right token we are looking for

list of tokens⇒ set of (int, list of tokens)

AFL 09, King’s College London, 28. November 2012 – p. 11/18

if the input is
num_tok(42) ::

num_tok(3) ::
tok3 :: . . . :: tokn

and the parser is
ntp ∼ ntp

the successful output will be

{((42, 3), tok2 :: . . . :: tokn)}

Now we can form
(ntp ∼ ntp) =⇒ f

where f is the semantic action (“what to do with
the pair”)

AFL 09, King’s College London, 28. November 2012 – p. 12/18

if the input is
num_tok(42) ::

num_tok(3) ::
tok3 :: . . . :: tokn

and the parser is
ntp ∼ ntp

the successful output will be

{((42, 3), tok2 :: . . . :: tokn)}
Now we can form

(ntp ∼ ntp) =⇒ f

where f is the semantic action (“what to do with
the pair”)

AFL 09, King’s College London, 28. November 2012 – p. 12/18

Semantic Actions
Addition

T ∼ + ∼ E =⇒ f((x, y), z)⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T =⇒ f((x, y), z)⇒ x ∗ z

Parenthesis

(∼ E ∼) =⇒ f((x, y), z)⇒ y

AFL 09, King’s College London, 28. November 2012 – p. 13/18

Semantic Actions
Addition

T ∼ + ∼ E =⇒ f((x, y), z)⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T =⇒ f((x, y), z)⇒ x ∗ z

Parenthesis

(∼ E ∼) =⇒ f((x, y), z)⇒ y

AFL 09, King’s College London, 28. November 2012 – p. 13/18

Semantic Actions
Addition

T ∼ + ∼ E =⇒ f((x, y), z)⇒ x + z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T =⇒ f((x, y), z)⇒ x ∗ z

Parenthesis

(∼ E ∼) =⇒ f((x, y), z)⇒ y

AFL 09, King’s College London, 28. November 2012 – p. 13/18

Types of Parsers
Sequencing: if p returns results of type T , and q
results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p =⇒ f
returns results of type

S

AFL 09, King’s College London, 28. November 2012 – p. 14/18

Types of Parsers
Sequencing: if p returns results of type T , and q
results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p =⇒ f
returns results of type

S

AFL 09, King’s College London, 28. November 2012 – p. 14/18

Types of Parsers
Sequencing: if p returns results of type T , and q
results of type S, then p ∼ q returns results of
type

T × S

Alternative: if p returns results of type T then
q must also have results of type T , and p || q
returns results of type

T

Semantic Action: if p returns results of type T
and f is a function from T to S, then p =⇒ f
returns results of type

S
AFL 09, King’s College London, 28. November 2012 – p. 14/18

Input Types of Parsers

input: list of tokens
output: set of (output_type, list of tokens)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 09, King’s College London, 28. November 2012 – p. 15/18

Input Types of Parsers

input: list of tokens
output: set of (output_type, list of tokens)

actually it can be any input type as long as it is a
kind of sequence (for example a string)

AFL 09, King’s College London, 28. November 2012 – p. 15/18

Scannerless Parsers

input: string
output: set of (output_type, string)

but lexers are better when whitespaces or
comments need to be filtered out

AFL 09, King’s College London, 28. November 2012 – p. 16/18

Compiled vs. Interpreted Code

0 0.2 0.4 0.6 0.8 1
·106

1

2

3

4

5

n

m
in

s

AFL 09, King’s College London, 28. November 2012 – p. 17/18

Compiled vs. Interpreted Code

0001000002000003000004000005000006000007000008000009000001000000
00.51

1.52
2.53
3.54
4.55
5.5

1s

se
cs

AFL 09, King’s College London, 28. November 2012 – p. 18/18

