
A Crash‑Course on Scala
Scala is a programming language that combines functional and object‑oriented
programming‑styles. It has received quite a bit of attention in the last five years
or so. One reason for this attention is that, like the Java programming language,
Scala compiles to the Java Virtual Machine (JVM) and therefore Scala programs
can run under MacOSX, Linux and Windows.1 Unlike Java, however, Scala of‑
ten allows programmers towrite very concise and elegant code. Some therefore
say: Scala is themuch better Java. A number of companies, TheGuardian, Twit‑
ter, Coursera, FourSquare, LinkedIn to name a few, either use Scala exclusively
in production code, or at least to some substantial degree. It also seems to be
useful in job‑interviews (in Data Science) according to this annectotical report

https://techcrunch.com/2016/06/14/scala-is-the-new-golden-child/

If you want to try out Scala yourself, the official Scala compiler can be down‑
loaded from

http://www.scala-lang.org

A ready‑made bundle with the Eclipse IDE is at

http://scala-ide.org/download/sdk.html

Why do I use Scala in the AFLmodule? Actually, you can do any part of the
coursework in anyprogramming language you like. I use Scala for showing you
code during the lectures because its functional programming‑style allows me
to implement the functions we will discuss with very small code‑snippets. If I
had to do this in Java, I would first have to go through heaps of boilerplate code
and the code‑snippets would not look pretty. Since the Scala compiler is free,
you can download the code‑snippets and run every example I give. But if you
prefer, you can also easily translate them into any other functional language,
for example Haskell, Swift, Standard ML, F#, Ocaml and so on.

Developing programs in Scala can be done with the Eclipse IDE and also
with the IntelliJ IDE, but for the small programs I will develop the good old
Emacs‑editor is adequate for me and I will run the programs on the command
line. One advantage of Scala over Java is that it includes an interpreter (a REPL,
or Read‑Eval‑Print‑Loop) with which you can run and test small code‑snippets
without the need of the compiler. This helps a lot with interactively developing
programs. Once you installed Scala, you can start the interpreter by typing on
the command line:

$ scala
Welcome to Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala >

1There are also experimental backends for Android and JavaScript; and also work is under way
to have a native compiler, see https://github.com/scala-native/scala-native.

1

https://techcrunch.com/2016/06/14/scala-is-the-new-golden-child/
http://www.scala-lang.org
http://scala-ide.org/download/sdk.html
https://github.com/scala-native/scala-native

Of course the precise responsemay vary due to the version and platformwhere
you installed Scala. At the Scala prompt you can type things like 2 + 3 Ret and
the output will be

scala> 2 + 3
res0: Int = 5

indicating that the result of the addition is of type Int and the actual result is
5. Another classic example you can try out is

scala> print("hello world")
hello world

Note that in this case there is no result. The reason is that print does not ac‑
tually produce a result (there is no resXX and no type), rather it is a function
that causes the side‑effect of printing out a string. Once you are more familiar
with the functional programming‑style, you will know what the difference is
between a function that returns a result, like addition, and a function that causes
a side‑effect, like print. We shall come back to this point later, but if you are
curious now, the latter kind of functions always has Unit as return type.

If youwant to write a stand‑alone app in Scala, you can implement an object
that is an instance of App, say

object Hello extends App {
println("hello world")

}

save it in a file, say hello-world.scala, and then run the compiler and runtime
environment:

$ scalac hello -world.scala
$ scala Hello
hello world

As mentioned above, Scala targets the JVM and consequently Scala pro‑
grams can also be executed by the bog‑standard Java Runtime. This only re‑
quires the inclusion of scala-library.jar, which onmy computer can be done
as follows:

$ scalac hello -world.scala
$ java -cp /usr/local/src/scala/lib/scala -library.jar:. Hello
hello world

You might need to adapt the path to where you have installed Scala.

Inductive Datatypes
The elegance and conciseness of Scala programs are often a result of inductive
datatypes that can be easily defined in Scala. For example in “every‑day math‑
ematics” we define regular expressions simply by giving the grammar

2

r ::= 0 null
| 1 empty string
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r⋆ star (zero or more)

This grammar specifies what regular expressions are (essentially a kind of tree‑
structure with three kinds of inner nodes—sequence, alternative and star—and
three kinds of leave nodes—null, empty and character). If you are familiar
with Java, it might be an instructive exercise to define this kind of inductive
datatypes in Java2 and then compare itwith how it can be implemented in Scala.

Implementing the regular expressions from above in Scala is actually very
simple: It first requires an abstract class, say, Rexp. This will act as the type for
regular expressions. Second, it requires a case for each clause in the grammar.
The cases for 0 and 1 do not have any arguments, while in all the other cases
we do have arguments. For example the character regular expression needs to
take as an argument the character it is supposed to recognise. In Scala, the cases
without arguments are called case objects, whereas the ones with arguments are
case classes. The corresponding Scala code is as follows:

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR (c: Char) extends Rexp
case class SEQ (r1: Rexp, r2: Rexp) extends Rexp
case class ALT (r1: Rexp, r2: Rexp) extends Rexp
case class STAR (r: Rexp) extends Rexp

In order to be an instance of Rexp, each case object and case class needs to extend
Rexp. Given the grammar above, I hope you can see the underlying pattern. If
you want to play further with such definitions of inductive datatypes, feel free
to define for example binary trees.

Once you make a definition like the one above in Scala, you can represent
the regular expression for a + b, for example, as ALT(CHAR('a'), CHAR('b')).
Expressions such as 'a' stand for ASCII characters, though in the output syn‑
tax, as you can see below, the quotes are omitted. In a later section we will
see how we can support the more mathematical infix notation for regular ex‑
pression operators in Scala. If you want to assign this regular expression to a
variable, you can use the keyword val and type

scala> val r = ALT(CHAR('a'), CHAR('b'))
r: ALT = ALT(CHAR(a),CHAR(b))

As you can see, in order to make such assignments, no new or constructor is
required in the class (as in Java). However, if there is the need for some non‑

2Happy programming! ©

3

standard initialisation, you can of course define such a constructor in Scala too.
But we omit such “tricks” here.

Note that Scala in its response says the variable r is of type ALT, not Rexp.
This might be a bit unexpected, but can be explained as follows: Scala always
tries to find the most general type that is needed for a variable or expression,
but does not “over‑generalise”. In our definition the type Rexp is more general
than ALT, since it is the abstract class for all regular expressions. But in this
particular case there is no need to give r the more general type of Rexp. This is
different if you want to form a list of regular expressions, for example

scala> val ls = List(ALT(CHAR('a'), CHAR('b')), ZERO)
ls: List[Rexp] = List(ALT(CHAR(a),CHAR(b)), ZERO)

In this case, Scala needs to assign a common type to the regular expressions so
that it is compatible with the fact that lists can only contain elements of a single
type. In this case the first common type is Rexp.3

For compound types like List[...], the general rule is that when a type
takes another type as argument, then this argument type is written in angle‑
brackets. This can also contain nested types as in List[Set[Rexp]], which is a
list of sets each of which contains regular expressions.

Functions and Pattern‑Matching
I mentioned above that Scala is a very elegant programming language for the
code we will write in this module. This elegance mainly stems from the fact
that in addition to inductive datatypes, also functions can be implemented very
easily in Scala. To show you this, let us first consider a problem from number
theory, called the Collatz‑series, which corresponds to a famous unsolved prob‑
lem in mathematics.4 Mathematicians define this series as:

collatzn+1
def
=

{
1
2 ∗ collatzn if collatzn is even
3 ∗ collatzn + 1 if collatzn is odd

The famous unsolved question is whether this series started with any n > 0 as
collatz0 will always return to 1. This is obvious when started with 1, and also
with 2, but already needs a bit of head‑scratching for the case of 3.

If we want to avoid the head‑scratching, we could implement this as the
following function in Scala:

def collatz(n: BigInt) : Boolean = {
if (n == 1) true else
if (n % 2 == 0) collatz(n / 2) else
collatz(3 * n + 1)

}

3If you type in this example, you will notice that the type contains some further information,
but let us ignore this for the moment.

4See for example http://mathworld.wolfram.com/CollatzProblem.html.

4

http://mathworld.wolfram.com/CollatzProblem.html

The keyword for function definitions is def followed by the name of the func‑
tion. After that you have a list of arguments (enclosed in parentheses and sepa‑
rated by commas). Each argument in this list needs its type to be annotated. In
this case we only have one argument, which is of type BigInt. This type stands
in Scala for arbitrary precision integers (in case youwant to try out the function
on really big numbers). After the arguments comes the type of what the func‑
tion returns—a Boolean in this case for indicating that the function has reached
1. Finally, after the = comes the body of the function implementing what the
function is supposed to do. What the collatz function does should be pretty
self‑explanatory: the function first tests whether n is equal to 1 in which case it
returns true and so on.

Notice the quirk in Scala’s syntax for ifs: The condition needs to be enclosed
in parentheses and the then‑case comes right after the condition—there is no
then keyword in Scala.

The real power of Scala comes, however, from the ability to define functions
by pattern matching. In the collatz function above we need to test each case
using a sequence of ifs. This can be very cumbersome and brittle if there are
many cases. If we wanted to define a function over regular expressions in Java,
for example, which does not have pattern‑matching, the resulting code would
just be awkward.

Mathematicians already use the power of pattern‑matching when they de‑
fine the function that takes a regular expression and produces another regular
expression that can recognise the reversed strings. They define this function as
follows:

rev(0) def
= 0

rev(1) def
= 1

rev(c) def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

It is defined by recursion analysing each pattern of what the regular expres‑
sion might look like. The corresponding Scala code looks very similar to this
definition, thanks to pattern‑matching.
The keyword for starting a pattern‑match is match followed by a list of cases.
Before the match keyword can be another pattern, but often, as in the case
above, it is just a variable you want to pattern‑match (the r after = in Line 1).

Each case in this definition follows the structure of how we defined regular
expressions as inductive datatype. For example the case in Line 3 you can read
as: if the regular expression r is of the form EMPTY then do whatever follows
the => (in this case just return EMPTY). Line 5 reads as: if the regular expres‑
sion r is of the form ALT(r1, r2), where the left‑branch of the alternative is
matched by the variable r1 and the right‑branch by r2 then do “something”.
The “something” can now use the variables r1 and r2 from the match.

5

If you want to play with this function, call it for example with the regular
expression ab + ac. This regular expression can recognise the strings ab and ac.
The function rev produces ba + ca, which can recognise the reversed strings ba
and ca.

In Scala each pattern‑match can also be guarded as in

case Pattern if Condition => Do_Something

This allows us, for example, to re‑write the collatz‑function from above as
follows:

def collatz(n: BigInt) : Boolean = n match {
case n if (n == 1) => true
case n if (n % 2 == 0) => collatz(n / 2)
case _ => collatz(3 * n + 1)

}

Although in this particular case the pattern‑match does not improve the code in
any way. In cases like rev, however, it is really crucial. The underscore in Line
4 indicates that we do not care what the pattern looks like. Thus this case acts
like a default case whenever the cases above did not match. Cases are always
tried out from top to bottom.

Loops, or better the Absence thereof
Coming from Java or C, you might be surprised that Scala does not really have
loops. It has instead, what is in functional programming called, maps. To il‑
lustrate how they work, let us assume you have a list of numbers from 1 to 8
and want to build the list of squares. The list of numbers from 1 to 8 can be
constructed in Scala as follows:

scala> (1 to 8).toList
res1: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8)

Generating from this list, the list of squares in a programming language such
as Java, you would assume the list is given as a kind of array. You would then
iterate, or loop, an index over this array and replace each entry in the array by
the square. Right? In Scala, and in other functional programming languages,
you use maps to achieve the same.

Amap essentially takes a function that describes how each element is trans‑
formed (for example squared) and a list over which this function should work.
There are two forms to express such maps in Scala. The first way is called a
for‑comprehension. Squaring the numbers from 1 to 8 would look in this form as
follows:

scala> for (n <- (1 to 8).toList) yield n * n
res2: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)

The important keywords are for and yield. This for‑comprehension roughly
states that from the list of numbers we draw ns and compute the result of

6

n * n. As you can see, we specified the list where each n comes from, namely
(1 to 8).toList, and how each element needs to be transformed. This can
also be expressed in a second way in Scala by using directly maps as follows:

scala> (1 to 8).toList.map(n => n * n)
res3 = List(1, 4, 9, 16, 25, 36, 49, 64)

In this way, the expression n => n * n stands for the function that calculates
the square (this is how the ns are transformed). This expression for functions
might remind you of your lessons about the lambda‑calculus where this would
have beenwritten as λn. n ∗ n. It might not be obvious, but for‑comprehensions
are just syntactic sugar: when compiling, Scala translates for‑comprehensions
into equivalent maps. This even works when for‑comprehensions get more
complicated (see below).

The very charming feature of Scala is that suchmaps or for‑comprehensions
can be written for any kind of data collection, such as lists, sets, vectors, options
and so on. For example if we instead compute the reminders modulo 3 of this
list, we can write

scala> (1 to 8).toList.map(n => n % 3)
res4 = List(1, 2, 0, 1, 2, 0, 1, 2)

If we, however, transform the numbers 1 to 8 not into a list, but into a set, and
then compute the reminders modulo 3 we obtain

scala> (1 to 8).toSet[Int].map(n => n % 3)
res5 = Set(2, 1, 0)

This is the correct result for sets, as there are only three equivalence classes of
integers modulo 3. Note that in this example we need to “help” Scala to trans‑
form the numbers into a set of integers by explicitly annotating the type Int.
Since maps and for‑comprehensions are just syntactic variants of each other,
the latter can also be written as

scala> for (n <- (1 to 8).toSet[Int]) yield n % 3
res5 = Set(2, 1, 0)

For‑comprehensions can also be nested and the selection of elements can be
guarded. For example if we want to pair up the numbers 1 to 4 with the letters
a to c, we can write

scala> for (n <- (1 to 4).toList;
m <- ('a' to 'c').toList) yield (n, m)

res6 = List((1,a), (1,b), (1,c), (2,a), (2,b), (2,c),
(3,a), (3,b), (3,c), (4,a), (4,b), (4,c))

Or if we want to find all pairs of numbers between 1 and 3 where the sum is an
even number, we can write

7

scala> for (n <- (1 to 3).toList;
m <- (1 to 3).toList;
if (n + m) % 2 == 0) yield (n, m)

res7 = List((1,1), (1,3), (2,2), (3,1), (3,3))

The if‑condition in the for‑comprehension filters out all pairs where the sum
is not even.

While hopefully this all looks reasonable, there is one complication: In the
examples abovewe alwayswanted to transformone list into another list (e.g. list
of squares), or one set into another set (set of numbers into set of reminders
modulo 3). What happens if we just want to print out a list of integers? Then
actually the for‑comprehension needs to be modified. The reason is that print,
you guessed it, does not produce any result, but only produces what is in the
functional‑programming‑lingo called a side‑effect. Printing out the list of num‑
bers from 1 to 5 would look as follows

scala> for (n <- (1 to 5).toList) print(n)
12345

where you need to omit the keyword yield. You can also do more elaborate
calculations such as

scala> for (n <- (1 to 5).toList) {
val square_n = n * n
println(s"$n * $n = $square_n")

}
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25

In this code I use a variable assignment (val square_n = ...) and alsowhat is
called in Scala a string interpolation, written s"...". The latter is for printing out
an equation. It allows me to refer to the integer values n and square_n inside a
string. This is very convenient for printing out “things”.

The corresponding map construction for functions with side‑effects is in
Scala called foreach. So you could also write

scala> (1 to 5).toList.foreach(n => print(n))
12345

or even just

scala> (1 to 5).toList.foreach(print)
12345

Again I hope this reminds you a bit of your lambda‑calculus lessons, where an
explanation is given why both forms produce the same result.

If you want to find out more about maps and functions with side‑effects,

8

you can ponder about the response Scala gives if you replace foreach by map in
the expression above. Scala will still allow map with side‑effect functions, but
then reacts with a slightly interesting result.

Types
Inmost functional programming languages, types play an important role. Scala
is such a language. You have already seen built‑in types, like Int, Boolean,
String and BigInt, but also user‑defined ones, like Rexp. Unfortunately, types
can be a thorny subject, especially in Scala. For example, why do we need to
give the type to toSet[Int], but not to toList? The reason is the power of
Scala, which sometimes means it cannot infer all necessary typing information.
At the beginning while getting familiar with Scala, I recommend a “play‑it‑by‑
ear‑approach” to types. Fully understanding type‑systems, especially compli‑
cated ones like in Scala, can take a module on their own.5

In Scala, types are needed whenever you define an inductive datatype and
also whenever you define functions (their arguments and their results need a
type). Base types are types that do not take any (type)arguments, for exam‑
ple Int and String. Compound types take one or more arguments, which
as seen earlier need to be given in angle‑brackets, for example List[Int] or
Set[List[String]] or Map[Int, Int].

There are a few special type‑constructors that fall outside this pattern. One
is for tuples, where the type is written with parentheses. For example

(Int, Int, String)

is for a triple (a tuple with three components—two integers and a string). Tu‑
ples are helpful if you want to define functions with multiple results, say the
function returning the quotient and reminder of two numbers. For this you
might define:

def quo_rem(m: Int, n: Int) : (Int, Int) = (m / n, m % n)

Since this function returns a pair of integers, its return type needs to be of type
(Int, Int). Incidentally, this is also the input type of this function. Notice this
function takes two arguments, namely m and n, both of which are integers. They
are “packaged” in a pair. Consequently the complete type of quo_rem is

(Int, Int) => (Int, Int)

Another special type‑constructor is for functions, written as the arrow =>.
For example, the type Int => String is for a function that takes an integer as
input argument and produces a string as result. A function of this type is for
instance

5Still, such a study can be a rewarding training: If you are in the business of designing new
programming languages, you will not be able to turn a blind eye to types. They essentially help
programmers to avoid common programming errors and help with maintaining code.

9

def mk_string(n: Int) : String = n match {
case 0 => "zero"
case 1 => "one"
case 2 => "two"
case _ => "many"

}

It takes an integer as input argument and returns a string. Unlike other func‑
tional programming languages, there is in Scala no easy way to find out the
types of existing functions, except by looking into the documentation

http://www.scala-lang.org/api/current/

The function arrow can also be iterated, as in Int => String => Boolean.
This is the type for a function taking an integer as first argument and a string
as second, and the result of the function is a boolean. Though silly, a function
of this type would be

def chk_string(n: Int)(s: String) : Boolean =
mk_string(n) == s

which checks whether the integer n corresponds to the name s given by the
function mk_string. Notice the unusual way of specifying the arguments of
this function: the arguments are given one after the other, instead of being in
a pair (what would be the type of this function then?). This way of specifying
the arguments can be useful, for example in situations like this

scala> List("one", "two", "three", "many").map(chk_string(2))
res4 = List(false, true, false, false)

scala> List("one", "two", "three", "many").map(chk_string(3))
res5 = List(false, false, false, true)

In each case we can give to map a specialised version of chk_string—once spe‑
cialised to 2 and once to 3. This kind of “specialising” a function is called partial
application—we have not yet given to this function all arguments it needs, but
only some of them.

Coming back to the type Int => String => Boolean. The rule about such
function types is that the right‑most type specifies what the function returns (a
boolean in this case). The types before that specify how many arguments the
function expects and what their type is (in this case two arguments, one of type
Int and another of type String). Given this rule, what kind of function has
type (Int => String) => Boolean? Well, it returns a boolean. More interest‑
ingly, though, it only takes a single argument (because of the parentheses). The
single argument happens to be another function (taking an integer as input and
returning a string). Remember that mk_string is just such a function. So how
can we use it? For this define the somewhat silly function apply_3:

10

http://www.scala-lang.org/api/current/

def apply_3(f: Int => String): Bool = f(3) == "many"

scala> apply_3(mk_string)
res6 = true

You might ask: Apart from silly functions like above, what is the point of
having functions as input arguments to other functions? In Java there is indeed
no need of this kind of feature: at least in the past it did not allow such construc‑
tions. I think, the point of Java 8 is to lift this restriction. But in all functional
programming languages, including Scala, it is really essential to allow func‑
tions as input argument. Above you already seen map and foreachwhich need
this. Consider the functions print and println, which both print out strings,
but the latter adds a line break. You can call foreach with either of them and
thus changing how, for example, five numbers are printed.

scala> (1 to 5).toList.foreach(print)
12345
scala> (1 to 5).toList.foreach(println)
1
2
3
4
5

This is actually one of the main design principles in functional programming.
You have generic functions like map and foreach that can traverse data contain‑
ers, like lists or sets. They then take a function to specify what should be done
with each element during the traversal. This requires that the generic traversal
functions can cope with any kind of function (not just functions that, for ex‑
ample, take as input an integer and produce a string like above). This means
we cannot fix the type of the generic traversal functions, but have to keep them
polymorphic.6

There is one more type constructor that is rather special. It is called Unit.
Recall that Boolean has two values, namely true and false. This can be used,
for example, to test something and decide whether the test succeeds or not. In
contrast the type Unit has only a single value, written (). This seems like a
completely useless type and return value for a function, but is actually quite
useful. It indicates when the function does not return any result. The purpose
of these functions is to cause something being written on the screen or written
into a file, for example. This is what is called they cause some effect on the side,
namely a new content displayed on the screen or some new data in a file. Scala
uses the Unit type to indicate that a function does not have a result, but poten‑
tially causes some side‑effect. Typical examples are the printing functions, like
print.

6Another interestic topic about types, but we omit it here for the sake of brevity.

11

Cool Stuff
The first wow‑moment I had with Scala was when I came across the following
code‑snippet for reading a web‑page.

import io.Source
val url = """http://www.inf.kcl.ac.uk/staff/urbanc/"""
Source.fromURL(url)("ISO-8859-1").take(10000).mkString

These three lines return a string containing the HTML‑code of my webpage. It
actually already does something more sophisticated, namely only returns the
first 10000 characters of a webpage in case it is too large. Why is that code‑
snippet of any interest? Well, try implementing reading‑from‑a‑webpage in
Java. I also like the possibility of triple‑quoting strings, which I have only seen
in Scala so far. The idea behind this is that in such a string all characters are
interpreted literally—there are no escaped characters, like \n for newlines.

My second wow‑moment I had with a feature of Scala that other functional
programming languages do not have. This feature is about implicit type con‑
versions. If you have regular expressions and want to use them for language
processing you often want to recognise keywords in a language, for example
for, if, yield and so on. But the basic regular expression CHAR can only recog‑
nise a single character. In order to recognise a whole string, like for, you have
to put many of those together using SEQ:

SEQ(CHAR('f'), SEQ(CHAR('o'), CHAR('r')))

This gets quickly unreadablewhen the strings and regular expressions getmore
complicated. In other functional programming languages, you can explicitly
write a conversion function that takes a string, say "for", and generates the
regular expression above. But then your code is littered with such conversion
functions.

In Scala you can do better by “hiding” the conversion functions. The key‑
word for doing this is implicit and it needs a built‑in library called

scala.language.implicitConversions

Consider the code
import scala.language.implicitConversions

def charlist2rexp(s: List[Char]) : Rexp = s match {
case Nil => EMPTY
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))

}

implicit def string2rexp(s: String) : Rexp =
charlist2rexp(s.toList)

where the first seven lines implement a function that given a list of charac‑

12

ters generates the corresponding regular expression. In Lines 9 and 10, this
function is used for transforming a string into a regular expression. Since the
string2rexp‑function is declared as implicit, the effect will be that whenever
Scala expects a regular expression, but I only give it a string, it will automati‑
cally insert a call to the string2rexp‑function. I can now write for example

scala> ALT("ab", "ac")
res9 = ALT(SEQ(CHAR(a),CHAR(b)),SEQ(CHAR(a),CHAR(c)))

Recall that ALT expects two regular expressions as arguments, but I only supply
two strings. The implicit conversion function will transform the string into a
regular expression.

Using implicit definitions, Scala allows me to introduce some further syn‑
tactic sugar for regular expressions:

implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def ~ (s: Rexp) = SEQ(r, s)
def % = STAR(r)

}

implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def % = STAR(s)

}

This might seem a bit overly complicated, but its effect is that I can now write
regular expressions such as ab + ac simply as

scala> "ab" | "ac"
res10 = ALT(SEQ(CHAR(a),CHAR(b)),SEQ(CHAR(a),CHAR(c)))

I leave you to figure out what the other syntactic sugar in the code above stands
for.

One more useful feature of Scala is the ability to define functions with vary‑
ing argument lists. This is a feature that is already present in old languages,
like C, but seems to have been forgotten in the meantime—Java does not have
it. In the context of regular expressions this feature comes in handy: Say you
are fed up with writing many alternatives as

ALT(..., ALT(..., ALT(..., ...)))

Tomake it difficult, you do not know how deep such alternatives are nested. So
you need something flexible that can take as many alternatives as needed. In
Scala one can achieve this by adding a * to the type of an argument. Consider
the code

13

def Alts(rs: List[Rexp]) : Rexp = rs match {
case Nil => NULL
case r::Nil => r
case r::rs => ALT(r, Alts(rs))

}

def ALTS(rs: Rexp*) = Alts(rs.toList)

The function in Lines 1 to 5 takes a list of regular expressions and converts it
into an appropriate alternative regular expression. In Line 7 there is a wrapper
for this function which uses the feature of varying argument lists. The effect of
this code is that I can write the regular expression for keywords as

ALTS("for", "def", "yield", "implicit", "if", "match", "case")

Again I leave it to you to find out how much this simplifies the regular expres‑
sion in comparison with if I had to write this by hand using only the “plain”
regular expressions from the inductive datatype.

More Info
There is much more to Scala than I can possibly describe in this document.
Fortunately there are a number of free books about Scala and of course lots of
help online. For example

• http://www.scala-lang.org/docu/files/ScalaByExample.pdf

• http://www.scala-lang.org/docu/files/ScalaTutorial.pdf

• https://www.youtube.com/user/ShadowofCatron

• http://docs.scala-lang.org/tutorials

• https://www.scala-exercises.org

There is also a course at Coursera on Functional Programming Principles in
Scala by Martin Odersky, the main developer of the Scala language. And a
document that explains Scala for Java programmers

• http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

While I am quite enthusiastic about Scala, I am also happy to admit that it
has more than its fair share of faults. The problem seen earlier of having to give
an explicit type to toSet, but not toList is one of them. There are also many
“deep” ideas about types in Scala, which even to me as seasoned functional
programmer are puzzling. Whilst implicits are great, they can also be a source
of great headaches, for example consider the code:

scala> List (1, 2, 3) contains "your mom"
res1: Boolean = false

14

http://www.scala-lang.org/docu/files/ScalaByExample.pdf
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
https://www.youtube.com/user/ShadowofCatron
http://docs.scala-lang.org/tutorials
https://www.scala-exercises.org
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

Rather than returning false, this code should throw a typing‑error. There are
alsomany limitations Scala inherited from the JVM that can be really annoying.
For example a fixed stack size. One can work around this particular limitation,
but why does one have to? More such ‘puzzles’ can be found at

http://scalapuzzlers.com and http:
//latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/

Even if Scala has been a success in several high‑profile companies, there is
also a company (Yammer) that first used Scala in their production code, but
then moved away from it. Allegedly they did not like the steep learning curve
of Scala and also that new versions of Scala often introduced incompatibilities
in old code. In the past two months there have also been two forks of the Scala
compiler. It needs to be seen what the future brings for Scala.

So all in all, Scala might not be a great teaching language, but I hope this is
mitigated by the fact that I never require you to write any Scala code. You only
need to be able to read it. In the coursework you can use any programming
language you like. If you want to use Scala for this, then be my guest; if you do
not want, stick with the language you are most familiar with.

15

http://scalapuzzlers.com
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/

