
Coursework 1 (Strand 1)
This coursework is worth 4% and is due on 25 October at 16:00. You are asked
to implement a regular expression matcher and submit a document containing
the answers for the questions below. You can do the implementation in any
programming language you like, but you need to submit the source code with
which you answered the questions, otherwise a mark of 0% will be awarded.
You can submit your answers in a txt-file or pdf. Code send as code.

Disclaimer

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Task

The task is to implement a regular expression matcher based on derivatives of
regular expressions. The implementation should be able to deal with the usual
(basic) regular expressions

0, 1, c, r1 + r2, r1 · r2, r∗

but also with the following extended regular expressions:

[c1c2 . . . cn] a range of characters
r+ one or more times r
r? optional r
r{n,m} at least n-times r but no more than m-times
∼ r not-regular expression of r

In the case of r{n,m} you can assume the convention that 0 ≤ n ≤ m. The
meanings of the extended regular expressions are

L([c1c2 . . . cn])
def
= {[c1], [c2], . . . , [cn]}

L(r+) def
=

∪
1≤i .L(r)i

L(r?)
def
= L(r) ∪ {[]}

L(r{n,m})
def
=

∪
n≤i≤m .L(r)i

L(∼ r) def
= Σ∗ − L(r)

whereby in the last clause the set Σ∗ stands for the set of all strings over the
alphabet Σ (in the implementation the alphabet can be just what is represented
by, say, the type Char). So ∼ r means ‘all the strings that r cannot match’.

Be careful that your implementation of nullable and der satisfies for every r
the following two properties (see also Question 2):

1

• nullable(r) if and only if [] ∈ L(r)

• L(der c r) = Der c (L(r))

Important! Your implementation should have explicit cases for the basic reg-
ular expressions, but also explicit cases for the extended regular expressions.
That means do not treat the extended regular expressions by just translating
them into the basic ones. See also Question 2, where you are asked to explicitly
give the rules for nullable and der for the extended regular expressions.

Question 1
What is your King’s email address (you will need it in Question 3)?

Question 2
From the lectures you have seen the definitions for the functions nullable and der
for the basic regular expressions. Implement the rules for the extended regular
expressions:

nullable([c1c2 . . . cn])
def
= ?

nullable(r+) def
= ?

nullable(r?)
def
= ?

nullable(r{n,m})
def
= ?

nullable(∼ r) def
= ?

der c ([c1c2 . . . cn])
def
= ?

der c (r+) def
= ?

der c (r?)
def
= ?

der c (r{n,m})
def
= ?

der c (∼ r) def
= ?

Remember your definitions have to satisfy the two properties

• nullable(r) if and only if [] ∈ L(r)

• L(der c r)) = Der c (L(r))

Give the implementation and the text-version of the clauses above.

Question 3
Implement the following regular expression for email addresses

([a-z0-9__ .−]+) · @ · ([a-z0-9 .−]+) · . · ([a-z .]{2,6})

2

and calculate the derivative according to your email address. When calculating
the derivative, simplify all regular expressions as much as possible by applying
the following 7 simplification rules:

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

Write down your simplified derivative in a readable notation using parentheses
where necessary. That means you should use the infix notation +, ·, ∗ and so
on, instead of code.

Question 4
Suppose [a-z] stands for the range regular expression [a, b, c, . . . , z]. Consider
the regular expression / · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · / and decide wether
the following four strings are matched by this regular expression. Answer yes
or no.

1. "/**/"

2. "/*foobar*/"

3. "/*test*/test*/"

4. "/*test/*test*/"

Also test your regular expression matcher with the regular expressions a{3,5}

and (a?){3,5}. Test whether the strings

5. aa

6. aaa

7. aaaaa

8. aaaaaa

are matched or not. Does your matcher produce the expected results?

3

Question 5
Let r1 be the regular expression a · a · a and r2 be (a{19,19}) · (a?). Decidewhether
the following three strings consisting of as only can be matched by (r+1)+. Sim-
ilarly test them with (r+2)+. Again answer in all six cases with yes or no.

These are strings are meant to be entirely made up of as. Be careful when copy-
and-pasting the strings so as to not forgeĴing any a and to not introducing any
other character.

1. "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aa
aaa"

2. "aaa
aaa
aaa"

3. "aaa
aaa
aa"

4

