
Compilers and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework and coursework is

there)
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Scala Book, Exams

https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

homework (written exam 80%)
coursework (20%)

short survey at KEATS; to be answered until Sunday
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LastWeek

Last week I showed you a regular expression matcher
that works provably correct in all cases (we only started
with the proving part though)

matches s r if and only if s ∈ L(r)

by Janusz Brzozowski (1964)
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TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r
def
= r

ders (c :: s) r def
= ders s (der c r)
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Example
Given r def

= ((a · b) + b)∗ what is

der a ((a · b) + b)∗ ⇒ der a ((a · b) + b)∗

= (der a ((a · b) + b)) · r
= ((der a (a · b)) + (der a b)) · r
= (((der a a) · b) + (der a b)) · r
= ((1 · b) + (der a b)) · r
= ((1 · b) + 0) · r
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Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))

4 finally check whether the last regular expression can
match the empty string
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Simplification
Given r def

= ((a · b) + b)∗, you can simplify as follows

((1 · b) + 0) · r ⇒ ((1 · b) + 0) · r

= (b+ 0) · r

= b · r
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We proved

nullable(r) if and only if [] ∈ L(r)

by induction on the regular expression r.

AnyQuestions?
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We need to prove

L(der c r) = Der c (L(r))

also by induction on the regular expression r.
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Proofs about Rexps

P holds for 0, 1 and c

P holds for r1 + r2 under the assumption that P already
holds for r1 and r2.

P holds for r1 · r2 under the assumption that P already
holds for r1 and r2.

P holds for r∗ under the assumption that P already holds
for r.
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Proofs about Natural
Numbers and Strings

P holds for 0 and
P holds for n+ 1 under the assumption that P already
holds for n

P holds for [] and
P holds for c :: s under the assumption that P already
holds for s

CFL 03, King’s College London – p. 11/42



Regular Expressions
r ::= 0 nothing

| 1 empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and∼ r? Do they increase
the set of languages we can recognise?
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Negation of Regular Expr’s

∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r)
def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /
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Negation

Assume you have an alphabet consisting of the letters a,
b and c only. Find a (basic!) regular expression that
matches all strings except ab and ac!
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Automata
A deterministic finite automaton, DFA, consists of:
an alphabet Σ

a set of states Qs
one of these states is the start state Q0

some states are accepting states F, and
there is transition function δ

which takes a state as argument and a character and produces a
new state; this function might not be everywhere defined⇒
partial function

A(Σ, Qs, Q0, F, δ)
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Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

the start state can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but this does not
necessarily mean all strings are accepted)
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Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

for this automaton δ is the function

(Q0, a) → Q1 (Q1, a) → Q4 (Q4, a) → Q4
(Q0, b) → Q2 (Q1, b) → Q2 (Q4, b) → Q4

…
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Accepting a String
Given

A(Σ, Qs, Q0, F, δ)

you can define

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F
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Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular expression
that recognises all its strings.

not all languages are regular, e.g. anbn is not
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Regular Languages (2)

A language is regular iff there exists a regular expression
that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite
automaton that recognises all its strings.
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Non-Deterministic
Finite Automata

A non-deterministic finite automaton (NFA) consists
again of:
a finite set of states
some these states are the start states
some states are accepting states, and
there is transition relation

(Q1, a) → Q2
(Q1, a) → Q3

…

(Q1, a) → {Q2, Q3}
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AnNFA Example

Q0start Q1 Q2

b

b

a

a

a, b

a
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Another Example

For the regular expression (.∗)a (.{n})bc

0start 1 2 . . . . . . n+ 1 n+ 2 n+ 3

∗
a ∗ ∗ ∗ ∗ b c

n

Note the star-transitions: accept any character.
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Two Epsilon NFA Examples

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a

ϵ a
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Rexp to NFA

0 start

1 start

c start c
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Case r1 · r2
By recursion we are given two automata:

r1 r2

start
start

start
. . .

start

start
. . .

We need to (1) change the accepting nodes of the first automaton
into non-accepting nodes, and (2) connect them via ϵ-transitions
to the starting state of the second automaton.
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By recursion we are given two automata:

r1 · r2

start
start

start
. . . . . .

ϵs

ϵs

We need to (1) change the accepting nodes of the first automaton
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Case r1 + r2
By recursion we are given two automata:

r1

r2

start

start

start

. . .

. . .

We can just put both automata together.
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Case r∗

By recursion we are given an automaton for r:

r

start

start
. . .

Why can’t we just have an epsilon transition from the
accepting states to the starting state?
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Subset Construction
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Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} *

{} {}

{0} *

{0, 1, 2} {2}

{1} *

{1} {}

{2}

* {} {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}
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Subset Construction
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Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}
{0} * {0, 1, 2} {2}
{1} * {1} {}
{2} * {} {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



TheResult

{0, 1, 2}start {0, 2}

{0, 1}

{1, 2}

{0}

{1}

{2}

{}

a

b a

b

a

b

a
b

a b
a

b

b

a

a, b
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Removing Dead States
DFA: (original) NFA:

{0, 1, 2}start {2} {}

a

b

b

a

a, b

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

CFL 03, King’s College London – p. 30/42



Regexps and Automata

Regexps NFAs DFAs

minimal
DFAs

Thompson’s
construction

subset
construction

minimisation
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DFAMinimisation
1 Take all pairs (q, p) with q ̸= p
2 Mark all pairs that accepting and non-accepting states
3 For all unmarked pairs (q, p) and all characters c test

whether
(δ(q, c), δ(p, c))

are marked. If yes in at least one case, then also mark
(q, p).

4 Repeat last step until no change.
5 All unmarked pairs can be merged.
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Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆
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Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b
Q0Q1Q2Q3

Q1
Q2
Q3
Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆
⋆

Q0,2start Q1,3 Q4

a

b

b

a

a, b

minimal automaton
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Alternatives

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA
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DFA to Rexp

Q0start Q1 Q2

a

b

b

a
a

b

How to get from a DFA to a regular expression?
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Q0start Q1 Q2

a

b

b

a
a

b

You know how to solve since school days, no?

Q0 = 2 Q0 + 3 Q1 + 4 Q2
Q1 = 2 Q0 + 3 Q1 + 1 Q2
Q2 = 1 Q0 + 5 Q1 + 2 Q2
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a
a
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Q0start Q1 Q2

a

b

b

a
a

b

Q0 = 1+Q0 b+Q1 b+Q2 b
Q1 = Q0 a
Q2 = Q1 a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗
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Regular Languages (3)

A language is regular iff there exists a regular expression
that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite
automaton that recognises all its strings.

Why is every finite set of strings a regular language?
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Given the function

rev(0) def
= 0

rev(1) def
= 1

rev(c) def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

and the set

Rev A def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))
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