Compilers and Formal Languages (3)

Email: christian.urban at kcl.ac.uk Office: N7.07 (North Wing, Bush House) Slides: KEATS (also homework and coursework is there)

Scala Book, Exams

- https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf
- homework (written exam 80%)
- **o** coursework (20%)
- short survey at KEATS; to be answered until Sunday

Last week I showed you a regular expression matcher that works provably correct in all cases (we only started with the proving part though)

matches s r if and only if $s \in L(r)$

by Janusz Brzozowski (1964)

The Derivative of a Rexp

der c(**0**) $\stackrel{\text{def}}{=} \mathbf{0}$ *der c*(**1**) $\stackrel{\text{def}}{=} \mathbf{0}$ *der c*(*d*) $\stackrel{\text{def}}{=}$ if $c = d$ then 1 else 0 $\frac{d}{dr}$ *der c* ($r_1 + r_2$) $\stackrel{\text{def}}{=}$ *der c* $r_1 +$ *der c* r_2 $\text{der } c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } \text{nullable}(r_1)$ then $(\text{der } cr_1) \cdot r_2 + \text{der } cr_2$ else $(\text{der } c r_1) \cdot r_2$ *der c*(*r ∗*) $\stackrel{\text{def}}{=}$ $(\text{der } c r) \cdot (r^*)$ *ders* [] *r* $\stackrel{\text{def}}{=} r$ $ders(c::s)$ *r* $\stackrel{\text{def}}{=}$ *ders s* (*der c r*)

Example

 $\mathsf{Given}\, r \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} ((a\cdot b) + b)^*$ what is

 $\frac{d}{dx}(a \cdot b) + b$ ^{*} \Rightarrow $\frac{d}{dx}(a \cdot b) + b$ ^{*} $=$ $(der a ((a \cdot b) + b)) \cdot r$ $=$ $((\text{der } a (a \cdot b)) + (\text{der } a b)) \cdot r$ $=$ $(((\text{der } a \cdot a) \cdot b) + (\text{der } a \cdot b)) \cdot r$ $=$ $((1 \cdot b) + (derab)) \cdot r$ $=$ $((1 \cdot b) + 0) \cdot r$

Input: string *abc* and regular expression *r*

- ¹ *der a r*
- ² *der b* (*der a r*)
- ³ *der c*(*der b* (*der a r*))

Input: string *abc* and regular expression *r*

- ¹ *der a r*
- ² *der b* (*der a r*)
- ³ *der c*(*der b* (*der a r*))
- **1** finally check whether the last regular expression can match the empty string

Simplification

Given $r\stackrel{\scriptscriptstyle\rm def}{=} ((a\cdot b)+b)^*$, you can simplify as follows

 $((1 \cdot b) + 0) \cdot r \Rightarrow ((1 \cdot b) + 0) \cdot r$ $=$ $(b+0) \cdot r$ $=$ $h \cdot r$

We proved

nullable(*r*) if and only if $[$ $] \in L(r)$

by induction on the regular expression *r*.

We proved

nullable (r) *if and only if* $[$ $] \in L(r)$

by induction on the regular expression *r*.

Any Questions?

CFL 03, King's College London – p. 8/42

We need to prove

$$
L(dercr) = Derc(L(r))
$$

also by induction on the regular expression *r*.

Proofs about Rexps

- *P* holds for **0**, **1** and c
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r [∗]* under the assumption that *P* already holds for *r*.

Proofs about Natural Numbers and Strings

- *P* holds for 0 and
- *P* holds for $n + 1$ under the assumption that *P* already holds for *n*
- *P* holds for [] and
- *P* holds for *c*::*s* under the assumption that *P* already holds for *s*

Regular Expressions

How about ranges [*a*-*z*], *r* ⁺ and *∼ r*? Do they increase the set of languages we can recognise?

Negation of Regular Expr's

- *∼ r* (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=}$ *UNIV* $-L(r)$
- $\mathsf{nullable}(\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{not}(\mathsf{nullable}(r))$
- $\mathit{der} \, c \, (\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \, \sim \, (\mathit{der} \, c \, r)$

Negation of Regular Expr's

- *∼ r* (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=}$ *UNIV* $-L(r)$
- $\mathsf{nullable}(\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathsf{not}(\mathsf{nullable}(r))$
- $\mathit{der} \, c \, (\sim r) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \, \sim \, (\mathit{der} \, c \, r)$
	- Used often for recognising comments:

/ *· ∗ ·* (*∼* ([*a*-*z*] *∗ · ∗ ·* / *·* [*a*-*z*] *∗*)) *· ∗ ·* /

Assume you have an alphabet consisting of the letters *a*, *b* and *c* only. Find a (basic!) regular expression that matches all strings *except ab* and *ac*!

Automata

A **deterministic finite automaton**, DFA, consists of:

- an alphabet *Σ*
- a set of states Os
- \bullet one of these states is the start state Q_0
- some states are accepting states *F*, and
- there is transition function *δ*

which takes a state as argument and a character and produces a new state; this function might not be everywhere defined *⇒* partial function

 $A(\Sigma, \mathsf{Q}_\mathsf{S}, \mathsf{Q}_\mathsf{O}, \mathsf{F}, \delta)$

- the start state can be an accepting state
- \bullet it is possible that there is no accepting state
- all states might be accepting (but this does not necessarily mean all strings are accepted)

for this automaton *δ* is the function

 $(Q_0, a) \to Q_1$ $(Q_1, a) \to Q_4$ $(Q_4, a) \to Q_4$ $(Q_0, b) \rightarrow Q_2$ $(Q_1, b) \rightarrow Q_2$ $(Q_4, b) \rightarrow Q_4$ …

Accepting a String

Given

$A(\Sigma, \mathsf{Q}_5, \mathsf{Q}_0, \mathsf{F}, \delta)$

you can define

$$
\widehat{\delta}(q, [] \stackrel{\text{def}}{=} q
$$

$$
\widehat{\delta}(q, c::s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(q, c), s)
$$

Accepting a String

Given

$A(\Sigma, \mathsf{Q}_5, \mathsf{Q}_0, \mathsf{F}, \delta)$

you can define

$$
\widehat{\delta}(q, [] \stackrel{\text{def}}{=} q
$$

$$
\widehat{\delta}(q, c::s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(q, c), s)
$$

Whether a string *s* is accepted by *A*?

 $\delta(Q_0, s) \in F$

Regular Languages

A **language** is a set of strings.

A **regular expression** specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

Regular Languages

A **language** is a set of strings.

A **regular expression** specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

not all languages are regular, e.g. *a nb n* is not

Regular Languages (2)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or **equivalently**

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Non-Deterministic Finite Automata

A non-deterministic finite automaton (NFA) consists again of:

- a finite set of states
- some these states are the start states
- **•** some states are accepting states, and
- **•** there is transition relation

 $(Q_1, a) \rightarrow Q_2$ $(Q_1, a) \rightarrow Q_3$ …
 $(Q_1, a) \rightarrow Q_3$

Non-Deterministic Finite Automata

A non-deterministic finite automaton (NFA) consists again of:

- a finite set of states
- some these states are the start states
- **•** some states are accepting states, and
- **•** there is transition relation

$$
\begin{array}{ccc} (Q_1, a) \to Q_2 \\ (Q_1, a) \to Q_3 \end{array} \dots \qquad (Q_1, a) \to \{Q_2, Q_3\}
$$

An NFA Example

Another Example

For the regular expression (. *∗*)*a* (. *{n}*)*bc*

Note the star-transitions: accept any character.

CFL 03, King's College London – p. 22/42

Two Epsilon NFA Examples

Rexp to NFA

Case $r_1 \cdot r_2$

By recursion we are given two automata:

We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via *ϵ*-transitions to the starting state of the second automaton.

Case $r_1 \cdot r_2$

By recursion we are given two automata:

We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via *ϵ*-transitions to the starting state of the second automaton.

By recursion we are given two automata:

We can just put both automata together.

We can just put both automata together.

Case *r ∗*

By recursion we are given an automaton for *r*:

By recursion we are given an automaton for *r*:

Case *r ∗*

By recursion we are given an automaton for *r*:

Why can't we just have an epsilon transition from the accepting states to the starting state?

The Result

Removing Dead States

Regexps and Automata

Thompson's subset construction construction

Regexps and Automata

Thompson's subset construction construction

minimisation

CFL 03, King's College London – p. 31/42

DFA Minimisation

- **1** Take all pairs (q, p) with $q \neq p$
- 2 Mark all pairs that accepting and non-accepting states
- ³ For all unmarked pairs (*q*, *p*) and all characters *c* test whether

(*δ*(*q*,*c*), *δ*(*p*,*c*))

are marked. If yes in at least one case, then also mark (q, p) .

- **4** Repeat last step until no change.
- ⁵ All unmarked pairs can be merged.

• exchange initial / accepting states

- exchange initial / accepting states \bullet
- **o** reverse all edges

- exchange initial / accepting states \bullet
- reverse all edges \bullet
- subset construction *⇒* DFA

- exchange initial / accepting states
- reverse all edges \bullet
- subset construction *⇒* DFA \bullet
- remove dead states \bullet

- exchange initial / accepting states
- reverse all edges \bullet
- subset construction *⇒* DFA \bullet
- remove dead states \bullet
- \bullet repeat once more

- exchange initial / accepting states
- reverse all edges \bullet
- subset construction *⇒* DFA \bullet
- remove dead states \bullet
- repeat once more *⇒* minimal DFA \bullet

Regexps and Automata

Thompson's subset construction construction

minimisation

CFL 03, King's College London – p. 36/42

Regexps and Automata

CFL 03, King's College London – p. 36/42

DFA to Rexp

You know how to solve since school days, no?

$$
\begin{array}{c} Q_0=2\,Q_0+3\,Q_1+4\,Q_2\\ Q_1=2\,Q_0+3\,Q_1+1\,Q_2\\ Q_2=1\,Q_0+5\,Q_1+2\,Q_2 \end{array}
$$

$$
Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b
$$

\n
$$
Q_1 = Q_0 a
$$

\n
$$
Q_2 = Q_1 a + Q_2 a
$$

$$
Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b
$$

\n
$$
Q_1 = Q_0 a
$$

\n
$$
Q_2 = Q_1 a + Q_2 a
$$

Arden's Lemma:

If
$$
q = qr + s
$$
 then $q = sr^*$

Regexps and Automata

CFL 03, King's College London – p. 40/42

Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or **equivalently**

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or **equivalently**

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

Given the function

$$
rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}
$$

\n
$$
rev(\mathbf{1}) \stackrel{\text{def}}{=} \mathbf{1}
$$

\n
$$
rev(c) \stackrel{\text{def}}{=} c
$$

\n
$$
rev(r_1 + r_2) \stackrel{\text{def}}{=} rev(r_1) + rev(r_2)
$$

\n
$$
rev(r_1 \cdot r_2) \stackrel{\text{def}}{=} rev(r_2) \cdot rev(r_1)
$$

\n
$$
rev(r^*) \stackrel{\text{def}}{=} rev(r)^*
$$

and the set

$$
Rev A \stackrel{\text{def}}{=} \{ s^{-1} \mid s \in A \}
$$

prove whether

$$
L(rev(r)) = Rev(L(r))
$$