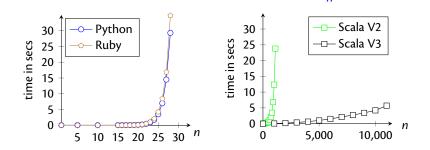
Compilers and Formal Languages (2)

Email: christian.urban at kcl.ac.ukOffice: N7.07 (North Wing, Bush House)Slides: KEATS (also homework is there)

Lets Implement an Efficient Regular Expression Matcher

Graphs: $a^{\{n\}} \cdot a^{\{n\}}$ and strings $a \dots a$



In the handouts is a similar graph for $(a^*)^* \cdot b$ and Java 8.

Evil Regular Expressions

- Regular expression Denial of Service (ReDoS)
- Evil regular expressions
 - $a^{\{n\}} \cdot a^{\{n\}}$
 - (a*)*
 - $([a \cdot z]^+)^*$ • $(a + a \cdot a)^*$
 - $(a + a^{?})^{*}$
- sometimes also called catastrophic backtracking
- ...I hope you have watched the video by the StackExchange engineer

• A Language is a set of strings, for example {[], hello, foobar, a, abc}

Concatenation of strings and languages
 foo @ bar = foobar
 A @ B ^{def} = {s₁@s₂ | s₁ ∈ A ∧ s₂ ∈ B}

For example $A = \{foo, bar\}, B = \{a, b\}$

 $A @ B = \{fooa, foob, bara, barb\}$

The Power Operation

• The *n*th Power of a language:

 $\begin{array}{rcl} A^0 & \stackrel{\text{def}}{=} & \{[]\} \\ A^{n+1} & \stackrel{\text{def}}{=} & A @ A^n \end{array}$

For example

A ⁴	=	A@A@A@A	$(@{[]})$
A ¹	=	А	(@{[]})
A ⁰	=	{[]}	

Homework Question

• Say $A = \{[a], [b], [c], [d]\}.$

How many strings are in A^4 ?

Homework Question

• Say $A = \{[a], [b], [c], [d]\}.$

How many strings are in A^4 ?

What if $A = \{[a], [b], [c], []\};$ how many strings are then in A^4 ?

The Star Operation

• The Kleene Star of a language:

$$A\star \stackrel{\text{\tiny def}}{=} \bigcup_{0 \le n} A^n$$

This expands to

 $A^0 \cup A^1 \cup A^2 \cup A^3 \cup A^4 \cup \dots$

or

 $\{[]\} \cup A \cup A@A \cup A@A@A \cup A@A@A@A \cup \dots$

The Meaning of a Regular Expression

 $L(\mathbf{0}) \stackrel{\text{def}}{=} \{\}$ $L(\mathbf{1}) \stackrel{\text{def}}{=} \{[]\}$ $L(c) \stackrel{\text{def}}{=} \{[c]\}$ $L(r_1 + r_2) \stackrel{\text{def}}{=} L(r_1) \cup L(r_2)$ $L(r_1 \cdot r_2) \stackrel{\text{def}}{=} \{s_1 @ s_2 \mid s_1 \in L(r_1) \land s_2 \in L(r_2)\}$ $L(r^*) \stackrel{\text{def}}{=} (L(r)) \star \stackrel{\text{def}}{=} \bigcup_{0 \le n} L(r)^n$

L is a function from regular expressions to sets of strings (languages): L: Rexp \Rightarrow Set[String]

homework (written exam 80%) coursework (20%; first one today) submission Fridays @ 18:00 – accepted until Mondays

Semantic Derivative

• The Semantic Derivative of a language w.r.t. to a character *c*:

$$Der\,c\,\mathsf{A}\stackrel{\text{\tiny def}}{=}\{\mathsf{s}\mid \mathsf{c}::\mathsf{s}\in\mathsf{A}\}$$

For $A = \{foo, bar, frak\}$ then $Der f A = \{oo, rak\}$ $Der b A = \{ar\}$ $Der a A = \{\}$

Semantic Derivative

• The Semantic Derivative of a language w.r.t. to a character *c*:

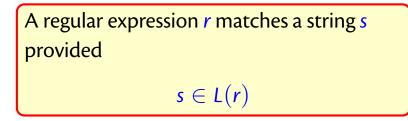
$$Der \, c \, \mathsf{A} \stackrel{\text{\tiny def}}{=} \{ \mathsf{s} \mid \mathsf{c} :: \mathsf{s} \in \mathsf{A} \}$$

For $A = \{foo, bar, frak\}$ then $Der fA = \{oo, rak\}$ $Der b A = \{ar\}$ $Der a A = \{\}$

We can extend this definition to strings

Ders s A =
$$\{s' \mid s @ s' \in A\}$$

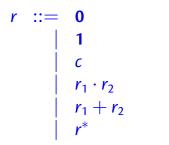
The Specification for Matching



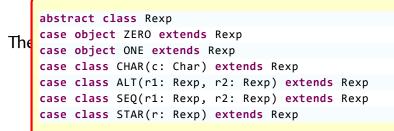
...and the point of the this lecture is to decide this problem as fast as possible (unlike Python, Ruby, Java etc)

Regular Expressions

Their inductive definition:



nothing empty string / "" / [] single character sequence alternative / choice star (zero or more)



r	::=	0	nothing
		1	empty string / "" / []
		С	single character
		$r_1 \cdot r_2$	sequence
		$r_1 + r_2$	alternative / choice
		r *	star (zero or more)

When Are Two Regular Expressions Equivalent?

$r_1 \equiv r_2 \stackrel{\text{\tiny def}}{=} L(r_1) = L(r_2)$

Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

 $a \cdot a \not\equiv a$ $a + (b \cdot c) \not\equiv (a + b) \cdot (a + c)$

CFL 02, King's College London - p. 14/47

 $\begin{array}{rrrr} a \cdot \mathbf{0} & \not\equiv & a \\ a + \mathbf{1} & \not\equiv & a \\ \mathbf{1} & \equiv & \mathbf{0}^* \\ \mathbf{1}^* & \equiv & \mathbf{1} \\ \mathbf{0}^* & \not\equiv & \mathbf{0} \end{array}$

Simplification Rules

 $r + 0 \equiv r$ $0 + r \equiv r$ $r \cdot 1 \equiv r$ $1 \cdot r \equiv r$ $r \cdot 0 \equiv 0$ $0 \cdot r \equiv 0$ $r + r \equiv r$

• How many basic regular expressions are there to match the string *abcd* ?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include 1 and 0?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include 1 and 0?
- How many if they are also not allowed to contain stars?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include 1 and 0?
- How many if they are also not allowed to contain stars?
- How many if they are also not allowed to contain _ + _?

Brzozowski's Algorithm (1)

...whether a regular expression can match the empty string:

 $nullable(\mathbf{0})$ nullable(1) nullable(c)nullable $(r_1 \cdot r_2)$ $nullable(r^*)$

 $\stackrel{\text{\tiny def}}{=}$ false $\stackrel{\text{def}}{=}$ true $\stackrel{\text{\tiny def}}{=}$ false $nullable(r_1 + r_2) \stackrel{\text{def}}{=} nullable(r_1) \lor nullable(r_2)$ $\stackrel{\text{\tiny def}}{=}$ nullable $(r_1) \wedge$ nullable (r_2) $\stackrel{\text{\tiny def}}{=}$ true

The Derivative of a Rexp

If r matches the string c::s, what is a regular expression that matches just s?

der c r gives the answer, Brzozowski 1964

The Derivative of a Rexp

 $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{0})$ $\stackrel{\text{def}}{=}$ 0 der c(1)der $c(d) \stackrel{\text{def}}{=} \text{if } c = d \text{ then 1 else 0}$ $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der c $(r_1 \cdot r_2) \stackrel{\text{def}}{=}$ if nullable (r_1) then $(der c r_1) \cdot r_2 + der c r_2$ else (der c r_1) · r_2 $\stackrel{\text{def}}{=} (\operatorname{der} \operatorname{c} \operatorname{r}) \cdot (\operatorname{r}^*)$ der c (r^*)

The Derivative of a Rexp

 $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{0})$ $\stackrel{\text{def}}{=}$ 0 der c(1) $\stackrel{\text{\tiny def}}{=}$ if c = d then 1 else 0 derc(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der c $(r_1 \cdot r_2) \stackrel{\text{def}}{=}$ if nullable (r_1) then $(der c r_1) \cdot r_2 + der c r_2$ else (der c r_1) · r_2 $\stackrel{\text{\tiny def}}{=} (\operatorname{der} \operatorname{c} \operatorname{r}) \cdot (\operatorname{r}^*)$ der c (r^*) $\stackrel{\text{def}}{=} r$ ders [] r ders (c::s) r $\stackrel{\text{def}}{=}$ ders s (der c r)

Examples

Given
$$r \stackrel{\text{\tiny def}}{=} ((a \cdot b) + b)^*$$
 what is

der a r = ?der b r = ?der c r = ?

The Brzozowski Algorithm

matches $r s \stackrel{\text{def}}{=} nullable(ders s r)$

CFL 02, King's College London – p. 22/47

Brzozowski: An Example

Does r₁ match *abc*?

- Step 1: build derivative of a and r_1
- Step 2: build derivative of *b* and r_2 ($r_3 = der b r_2$)
- Step 3: build derivative of *c* and r_3 ($r_4 = der c r_3$)
- Step 4: the string is exhausted: (null test whether r_4 can recognise the empty string
- Output: result of the test \Rightarrow *true* or *false*

 $(r_2 = der a r_1)$ $(r_3 = der b r_2)$ $(r_4 = der c r_3)$ (nullable(r_4))

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

• Der a $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

Der a (L(r₁))
Der b (Der a (L(r₁)))

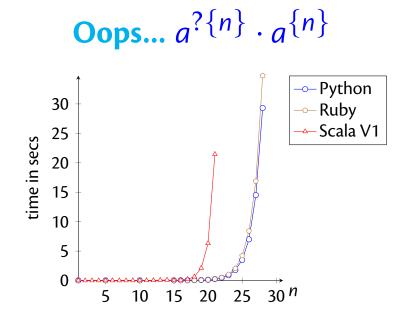
CFL 02, King's College London - p. 24/43

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

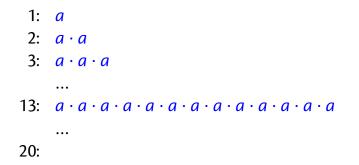
- Der a $(L(r_1))$
- Der b (Der a $(L(r_1)))$
- Der c (Der b (Der a $(L(r_1)))$)
- finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.



A Problem

We represented the "n-times" $a^{\{n\}}$ as a sequence regular expression:

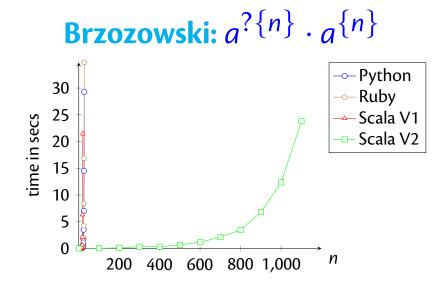


This problem is aggravated with $a^{?}$ being represented as a + 1.

Solving the Problem

What happens if we extend our regular expressions with explicit constructors

What is their meaning? What are the cases for *nullable* and *der*?



Examples

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$der a r = ((\mathbf{1} \cdot b) + \mathbf{0}) \cdot r$$
$$der b r = ((\mathbf{0} \cdot b) + \mathbf{1}) \cdot r$$
$$der c r = ((\mathbf{0} \cdot b) + \mathbf{0}) \cdot r$$

What are these regular expressions equivalent to?

Simplification Rules

```
r+0 \Rightarrow r

0+r \Rightarrow r

r\cdot 1 \Rightarrow r

1\cdot r \Rightarrow r

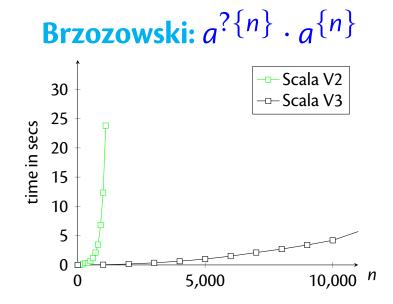
r\cdot 0 \Rightarrow 0

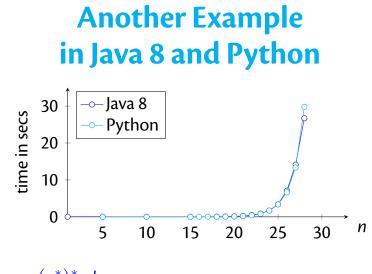
0\cdot r \Rightarrow 0

r+r \Rightarrow r
```

```
def ders(s: List[Char], r: Rexp) : Rexp = s match {
   case Nil => r
   case c::s => ders(s, simp(der(c, r)))
}
```

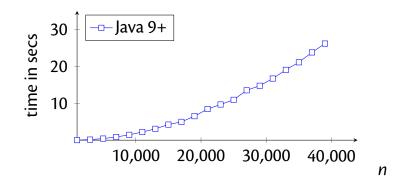
```
def simp(r: Rexp) : Rexp = r match {
  case ALT(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, r2s) => r2s
      case (r1s, ZERO) => r1s
      case (r1s, r2s) =>
        if (r1s == r2s) r1s else ALT(r1s, r2s)
    }
  }
  case SEQ(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, ) => ZERO
      case ( , ZERO) => ZERO
      case (ONE, r2s) => r2s
      case (r1s, ONE) => r1s
      case (r1s, r2s) => SEQ(r1s, r2s)
    }
  case r \Rightarrow r
```





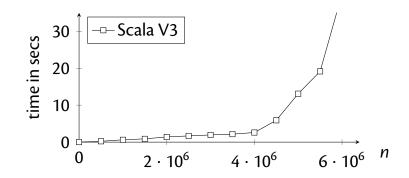
Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a_n$

Same Example in Java 9+



Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a_n$

and with Brzozowski



Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a$

What is good about this Alg.

- extends to most regular expressions, for example ~ r (next slide)
- is easy to implement in a functional language (slide after)
- the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is relatively new work)
- we can prove its correctness...

Negation of Regular Expr's

- $\sim r$ (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{\tiny def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{\tiny def}}{=} not(nullable(r))$
- der c $(\sim r) \stackrel{\text{\tiny def}}{=} \sim (\operatorname{der} c r)$

Negation of Regular Expr's

- $\sim r$ (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{\tiny def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{\tiny def}}{=} not (nullable(r))$
- der c $(\sim r) \stackrel{\text{\tiny def}}{=} \sim (\operatorname{der} \operatorname{c} r)$
 - Used often for recognising comments:

$$/\cdot * \cdot (\sim ([a-z]^* \cdot * \cdot / \cdot [a-z]^*)) \cdot * \cdot /$$

Coursework

Strand 1:

- Submission on Friday 12 October accepted until Monday 15 @ 18:00
- source code needs to be submitted as well
- you can re-use my Scala code from KEATS or use any programming language you like
- https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

Proofs about Rexps

Remember their inductive definition:

$$\begin{array}{c} r ::= & \mathbf{0} \\ & | & \mathbf{1} \\ & | & c \\ & | & r_1 \cdot r_2 \\ & | & r_1 + r_2 \\ & | & r^* \end{array}$$

If we want to prove something, say a property P(r), for all regular expressions r then ...

Proofs about Rexp (2)

- P holds for 0, 1 and c
- P holds for $r_1 + r_2$ under the assumption that P already holds for r_1 and r_2 .
- P holds for $r_1 \cdot r_2$ under the assumption that P already holds for r_1 and r_2 .
- *P* holds for *r*^{*} under the assumption that *P* already holds for *r*.

Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [] $\in L(r)$

CFL 02, King's College London - p. 41/47

Proofs about Rexp (4)

$$rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}$$

$$rev(\mathbf{1}) \stackrel{\text{def}}{=} \mathbf{1}$$

$$rev(c) \stackrel{\text{def}}{=} c$$

$$rev(r_1 + r_2) \stackrel{\text{def}}{=} rev(r_1) + rev(r_2)$$

$$rev(r_1 \cdot r_2) \stackrel{\text{def}}{=} rev(r_2) \cdot rev(r_1)$$

$$rev(r^*) \stackrel{\text{def}}{=} rev(r)^*$$

We can prove

$$L(rev(r)) = \{s^{-1} \mid s \in L(r)\}$$

by induction on r.

Correctness Proof for our Matcher

We started from

 $s \in L(r)$ $\Leftrightarrow \quad [] \in Ders \ s (L(r))$

Correctness Proof for our Matcher

We started from $s \in L(r)$ \Leftrightarrow [] \in Ders s (L(r)) • if we can show Ders s (L(r)) = L(ders s r) we have $\Leftrightarrow [] \in L(ders s r)$ \Leftrightarrow nullable(ders s r) $\stackrel{\text{def}}{=}$ matches s r

Proofs about Rexp (5)

Let *Der c A* be the set defined as

$$Der \, c \, A \stackrel{\text{\tiny def}}{=} \{ s \mid c :: s \in A \}$$

We can prove

$$L(\operatorname{der} c r) = \operatorname{Der} c (L(r))$$

by induction on *r*.

Proofs about Strings

If we want to prove something, say a property P(s), for all strings s then ...

- *P* holds for the empty string, and
- P holds for the string c::s under the assumption that P already holds for s

Proofs about Strings (2)

We can then prove

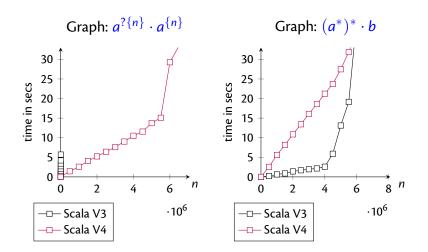
Ders s (L(r)) = L(ders s r)

We can finally prove

matches s r if and only if $s \in L(r)$

CFL 02, King's College London – p. 46/47

Epilogue



Epilogue

