Compilers and
Formal Languages (2)

Email:  christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides:  KEATS (also homework is there)



Lets Implement an Efficient
Regular Expression Matcher

. g?{nt . gint '
Graphs: a al andstringsa...a

n

30 | —+ Scala V2
25 | —0— Scala V3

time in secs
time in secs

n
5 10 15 20 25 30 " 0 5,000 10,000

In the handouts is a similar graph for (a*)* - b and Java 8.



Evil Regular Expressions

@ Regular expression Denial of Service (ReDoS)

@ Evil regular expressions
a’{n} . gin}

(a*)*
([a-2]7)"
(a+a?- a)*
(a+a’)*

@ sometimes also called catastrophic backtracking

@ ...l hope you have watched the video by the StackExchange
engineer



Languages

@ A Language is a set of strings, for example

{[], hello, foobar, a, abc}

@ Concatenation of strings and languages
foo @ bar = foobar

def

A@B = {51@52 ‘ S1€AA52€B}

For example A = {foo,bar},B = {a,b}

A@B = {fooa, foob, bara, barb }



The Power Operation

@ The nth Power of a language:

A =)
AN+1 def A@A"
For example
A = AQAQ@AQ@A @{[]})
Al = A (@{l]})
A = A}



Homework Question

@ SayA = {[a], [b]/ [c], [d]}

How many strings are in A“?



Homework Question

o SayA = {la, [b], [c], [d]}.

How many strings are in A“?

Whatif A = {[a], [b], [c], [| };
how many strings are then in A%?



The Star Operation

@ The Kleene Star of a language:

def

A* — UOSH AH
This expands to

ACUATUAZUASUAYU...

or

{[}] UAUA@RA U ARA@RA U ARA@QA@AU...



The Meaning of a
Regular Expression

def

def

)

)
Lc) =

)d_ef

)

)

def

def

{}

{{J}

{[c]}

L(r) UL(ry)

{s1@s, | s1 € L(r1) As; € L(ry)}
(L)% = UpenL(r)"

L is a function from regular expressions to
sets of strings (languages):

L: Rexp = Set|[String]



Questions?

homework (written exam 80%)
coursework (20%; first one today)
submission Fridays @ 18:00 — accepted until Mondays



Semantic Derivative

@ The Semantic Derivative of a language
w.r.t. to a character c:

DercA = {s|cus € A}

For A = {foo, bar, frak} then
DerfA = {oo,rak}
DerbA = {ar}
DeraA = {}



Semantic Derivative

The Semantic Derivative of a language
w.r.t. to a character c:

DercA = {s|cus € A}

For A = {foo, bar, frak} then
DerfA = {oo,rak}
DerbA = {ar}
DeraA = {}

We can extend this definition to strings

DerssA = {s' | s@s' € A}



The Specification for Matching

A regular expression r matches a string s
provided

s € L(r)

...and the point of the this lecture is to decide this
problem as fast as possible (unlike Python, Ruby, Java etc)



Regular Expressions

Their inductive definition:

r x= 0 nothing
| 1 empty string / "" / []
| ¢ single character
| rnn sequence
| ri+nr alternative / choice
|

r star (zero or more)



abstract class Rexp
Th case object ZERO extends Rexp

¢ case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(rl: Rexp, r2: Rexp) extends Rexp
case class SEQ(rl: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp

r u= 0 nothing
| 1 empty string / "" / []
| ¢ single character
| rnn sequence
| rhi+r alternative / choice
|

r star (zero or more)



When Are Two Regular
Expressions Equivalent?



Concrete Equivalences

(a+b)+c = a+ (b+¢)
ata = a
a+b = b+a
(a-b)-c = a-(b-¢)
c-(a+b) = (c-a)+(c-b)



Concrete Equivalences

(a+b)+c = a+ (b+¢)
ata = a
a+b = b+a
(a-b)-c = a-(b-¢)
c-(a+b) = (c-a)+(c-b)
a-a %= a

a+(b-c) # (a+b)-(a+c)



Corner Cases

a-0
a+1

TCHE TR TR
Q

© = O



Simplification Rules

r+0
0+r
r-1
1-r
r-0
0-r
r—+r

ST OO S N S S



Another Homework Question

@ How many basic regular expressions are there to match
the string abcd?



Another Homework Question

@ How many basic regular expressions are there to match
the string abcd?
@ How many if they cannot include 1 and 0?



Another Homework Question

@ How many basic regular expressions are there to match
the string abcd?

@ How many if they cannot include 1 and 0?
@ How many if they are also not allowed to contain stars?



Another Homework Question

@ How many basic regular expressions are there to match
the string abcd?

@ How many if they cannot include 1 and 0?
@ How many if they are also not allowed to contain stars?
@ How many if they are also not allowed to contain _ + _?



Brzozowski’s Algorithm (1)

...whether a regular expression can match the empty
string:

nullable(0) < false
nullable(1) < true
) < false

nullable(ry + ry) = nullable(ry) \/ nullable(r,)

def

nullable(ry - r;) = nullable(ry) A nullable(r,)

def

(
(
nullable(c
def
( def
(
nullable(r*) = true



The Derivative of a Rexp

If r matches the string c::s, what is a regular
expression that matches just s?

der c r gives the answer, Brzozowski 1964



The Derivative of a Rexp

derc (r*)

def

=0

“o

def .

= ifc =dthen1else 0
def

= dercry +dercr,

= if nullable(r+)
then (dercry) - r, + dercr,
else (dercry) - r,

= (dercr) - (r*)



The Derivative of a Rexp

def

=0
“o
def .
= ifc =dthen1else 0

f
= dercry +dercr,

= if nullable(r+)
then (dercry) - r, + dercr,

else (dercry) - r,
def

= (dercr) - (r*)

=r

= derss (dercr)



Examples

Givenr = ((a-b) + b)* whatis

derar =7
derbr =7
dercr =7



The Brzozowski Algorithm

matchesrs = nullable(ders s r)



Brzozowski: An Example

Does r; match abc?

Step 1:
Step 2:
Step 3:
Step 4:

Output:

build derivative ofaand r;  (r, = derar;)

(
build derivative of band r, (r; = derbr,)
build derivative of cand r;  (ry = dercrs)

the string is exhausted: (nullable(r,))
test whether r4 can recognise
the empty string

result of the test
=> true or false



The Idea of the Algorithm

If we want to recognise the string abc with regular
expression ry then

@ Dera (L(ry))



The Idea of the Algorithm

If we want to recognise the string abc with regular
expression ry then

@ Dera (L(ry))
@ Derb (Dera (L(ry)))



The Idea of the Algorithm

If we want to recognise the string abc with regular
expression ry then

@ Dera(L(n))
@ Derb (Dera(L(r)))
© Derc (Derb (Dera(L(rq))))

@ finally we test whether the empty string is in this set;
same for Ders abc (L(ry)).

The matching algorithm works similarly, just over regular
expressions instead of sets.



time in secs

Oops... alint . gin}

—o—Python
—o Ruby
——Scala V1

307



A Problem

We represented the “n-times” al™ asa sequence regular
expression:

1. a
2. a-a
3: a-a-a

13: a-a-a-a-a-a-a-a-a-a-a-a-a
20:

This problem is aggravated with a’ being represented as
a—+1.



Solving the Problem

What happens if we extend our regular expressions with
explicit constructors

0}
?

rou=
|
T

What is their meaning?
What are the cases for nullable and der?



time in secs

Brzozowski: a

30 |
25 |

20
15
10
5
0

|

a

/

L

200 400 600 800 1,000

2{n} . gint

—o—Python
—o Ruby
——Scala V1
~o-Scala V2

n



Examples

Recall the example of r = ((a - b) + b)* with
derar= ((1-b)+0)-r
derbr= ((0-b)+1)-r
dercr=((0-b)+0)-r

What are these regular expressions equivalent to?



Simplification Rules

r+0
0+r
r-1
1-r
r-0
0-r
r—+r

R R

def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))

}



def simp(r: Rexp) : Rexp = r match {
case ALT(r1, r2) => {
(simp(rl), simp(r2)) match {
case (ZERO, r2s) => r2s
case (rls, ZERO) => rils
case (rls, r2s) =>
if (rls == r2s) rls else ALT(rls, r2s)

}
case SEQ(rl1, r2) => {
(simp(rl), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (rls, ONE) => rls
case (rls, r2s) => SEQ(rls, r2s)

}

case r =>r



time in secs

Brzozowski: a’ ") . g1}

30 |
25 |
20 |
15 +
10 |

~o-Scala V2
—o—Scala V3




Another Example
in Java 8 and Python

30 | |—o—Java 8
—o-Python

20 |

10 |

time in secs

0o

5 10 15 20 25 30

Regex: (a*)* - b

Strings of theform a. ..a

n



Same Example in Java 9+

30 | |——oJava 9+

20 |

time in secs

10 |

10,000 20,000 30,000 40,000
n

Regex: (a™)* - b
Strings of theform a...a

n



and with Brzozowski

30 { |-=—Scala V3

20 |

time in secs

10 |

0 2-10° 4-10° 6-10°
Regex: (a*)* - b

Strings of theform a...a

n



What is good about this Alg.

extends to most regular expressions, for example ~ r
(next slide)

is easy to implement in a functional language (slide
after)

the algorithm is already quite old; there is still work to be
done to use it as a tokenizer (that is relatively new work)

we can prove its correctness...



Negation of Regular Expr’s

@ ~r  (everything that r cannot recognise)
o L(~r) = UNIV—L(r)
o nullable(~ r) = not (nullable(r))

o derc(~r) = ~ (dercr)



Negation of Regular Expr’s

@ ~r  (everything that r cannot recognise)
o L(~r) = UNIV—L(r)

o nullable(~ r) = not (nullable(r))

o derc(~r) = ~ (dercr)

Used often for recognising comments:

[ (e (lad]" 5/ fad]")) 5/



Coursework

Strand 1:

@ Submission on Friday 12 October
accepted until Monday 15 @ 18:00

@ source code needs to be submitted as well

@ you can re-use my Scala code from KEATS
or use any programming language you like

@ https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf



Proofs about Rexps

Remember their inductive definition:

r

ri-r
ri+nr;
| r

=0
| 1
e
|
|

If we want to prove something, say a property P(r), for
all regular expressions r then ...



Proofs about Rexp (2)

P holds for 0, 1 and ¢

P holds for ry 4 r, under the assumption that P already
holds for r; and r.

P holds for r - r, under the assumption that P already
holds for r; and r,.

P holds for r* under the assumption that P already holds
forr.



Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) ifand only if [] € L(r)



Proofs about Rexp (4)

rev(0) = 0

rev(1) = 1
def

rev(c) = ¢

rev(r, +r) = rev(r;) + rev(r,)
def
rev(ri-ry) = rev(ry) - rev(ry)
rev(r) = rev(r)*

We can prove

L(rev(r)) ={s7"|seL(r)}

by induction on r.



Correctness Proof
for our Matcher

@ We started from
s e L(r)

&[] € Derss (L(r))



Correctness Proof
for our Matcher

@ We started from
s e L(r)
<[] € Derss (L(r))
o if we can show Derss (L(r)) = L(derssr) we have
&[] € L(derssr)
< nullable(derssr)

def
= matchessr



Proofs about Rexp (5)

Let Der c A be the set defined as

DercA = {s|cus e A}
We can prove

L(dercr) = Derc (L(r))

by induction on r.



Proofs about Strings

If we want to prove something, say a property P(s), for
all strings s then ...

@ P holds for the empty string, and

@ P holds for the string c :: s under the assumption that P
already holds for s



Proofs about Strings (2)

We can then prove
Derss (L(r)) = L(derssr)
We can finally prove

matchessrifand only ifs € L(r)



time in secs

Epilogue

Graph: a’ln} . gin}

0 2

——Scala V3
—— Scala V4

time in secs

Graph: (a*)* - b

——Scala V3
—— Scala V4




Epilogue

Graph: a’{"} . g{n} Graph: (a*)* - b
30 30
. 25 . 25
9] 9]
& 20 & 20
c c
‘o 15 ‘o 15

7

def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match {

case
case
case
case

case
case

(Nil, r) =>r
(s, ZERO) => ZERO
(s, ONE) => if (s == Nil) ONE else ZERO
(s, CHAR(c)) => if (s == List(c)) ONE else
if (s == Nil) CHAR(c) else ZERO
(s, ALT(r1, r2)) => ALT(ders2(s, r2), ders2(s, r2))
(c::s, r) => ders2(s, simp(der(c, r)))




